Package elki.clustering.onedimensional
Class KNNKernelDensityMinimaClustering
- java.lang.Object
-
- elki.clustering.onedimensional.KNNKernelDensityMinimaClustering
-
- All Implemented Interfaces:
Algorithm,ClusteringAlgorithm<Clustering<ClusterModel>>
public class KNNKernelDensityMinimaClustering extends java.lang.Object implements ClusteringAlgorithm<Clustering<ClusterModel>>
Cluster one-dimensional data by splitting the data set on local minima after performing kernel density estimation.- Since:
- 0.6.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classKNNKernelDensityMinimaClustering.ModeEstimation mode.static classKNNKernelDensityMinimaClustering.ParParameterization class.-
Nested classes/interfaces inherited from interface elki.Algorithm
Algorithm.Utils
-
-
Field Summary
Fields Modifier and Type Field Description protected intdimDimension to use for clustering.protected intkNumber of neighbors to use for bandwidth.protected KernelDensityFunctionkernelKernel density function.private static LoggingLOGClass logger.protected intminwindowWindow width, for local minima criterions.protected KNNKernelDensityMinimaClustering.ModemodeEstimation modes.
-
Constructor Summary
Constructors Constructor Description KNNKernelDensityMinimaClustering(int dim, KernelDensityFunction kernel, KNNKernelDensityMinimaClustering.Mode mode, int k, int minwindow)Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description TypeInformation[]getInputTypeRestriction()Get the input type restriction used for negotiating the data query.Clustering<ClusterModel>run(Relation<? extends NumberVector> relation)Run the clustering algorithm on a data relation.-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface elki.clustering.ClusteringAlgorithm
autorun
-
-
-
-
Field Detail
-
LOG
private static final Logging LOG
Class logger.
-
dim
protected int dim
Dimension to use for clustering.
-
kernel
protected KernelDensityFunction kernel
Kernel density function.
-
mode
protected KNNKernelDensityMinimaClustering.Mode mode
Estimation modes.
-
k
protected int k
Number of neighbors to use for bandwidth.
-
minwindow
protected int minwindow
Window width, for local minima criterions.
-
-
Constructor Detail
-
KNNKernelDensityMinimaClustering
public KNNKernelDensityMinimaClustering(int dim, KernelDensityFunction kernel, KNNKernelDensityMinimaClustering.Mode mode, int k, int minwindow)Constructor.- Parameters:
dim- Dimension to use for clusteringkernel- Kernel functionmode- Bandwidth modek- Number of neighborsminwindow- Window size for comparison
-
-
Method Detail
-
getInputTypeRestriction
public TypeInformation[] getInputTypeRestriction()
Description copied from interface:AlgorithmGet the input type restriction used for negotiating the data query.- Specified by:
getInputTypeRestrictionin interfaceAlgorithm- Returns:
- Type restriction
-
run
public Clustering<ClusterModel> run(Relation<? extends NumberVector> relation)
Run the clustering algorithm on a data relation.- Parameters:
relation- Relation- Returns:
- Clustering result
-
-