Uses of Interface
elki.distance.Norm
-
Packages that use Norm Package Description elki.datasource.filter.normalization.instancewise Instancewise normalization, where each instance is normalized independently.elki.distance Distance functions for use within ELKI.elki.distance.colorhistogram Distance functions for color histograms.elki.distance.minkowski Minkowski space Lp norms such as the popular Euclidean and Manhattan distances.elki.distance.subspace Distance functions based on subspaces. -
-
Uses of Norm in elki.datasource.filter.normalization.instancewise
Fields in elki.datasource.filter.normalization.instancewise declared as Norm Modifier and Type Field Description (package private) Norm<? super V>LengthNormalization. normNorm to use.(package private) Norm<? super V>LengthNormalization.Par. normNorm to use.Constructors in elki.datasource.filter.normalization.instancewise with parameters of type Norm Constructor Description LengthNormalization(Norm<? super V> norm)Constructor. -
Uses of Norm in elki.distance
Classes in elki.distance that implement Norm Modifier and Type Class Description classMahalanobisDistanceMahalanobis quadratic form distance for feature vectors.classMatrixWeightedQuadraticDistanceMatrix weighted quadratic distance, the squared form ofMahalanobisDistance. -
Uses of Norm in elki.distance.colorhistogram
Classes in elki.distance.colorhistogram that implement Norm Modifier and Type Class Description classHSBHistogramQuadraticDistanceDistance function for HSB color histograms based on a quadratic form and color similarity.classRGBHistogramQuadraticDistanceDistance function for RGB color histograms based on a quadratic form and color similarity. -
Uses of Norm in elki.distance.minkowski
Classes in elki.distance.minkowski that implement Norm Modifier and Type Class Description classEuclideanDistanceEuclidean distance forNumberVectors.classLPIntegerNormDistanceLp-Norm forNumberVectors, optimized version for integer values of p.classLPNormDistanceLp-Norm (Minkowski norms) are a family of distances forNumberVectors.classManhattanDistanceManhattan distance forNumberVectors.classMaximumDistanceMaximum distance forNumberVectors.classMinimumDistanceMinimum distance forNumberVectors.classSparseEuclideanDistanceEuclidean distance function, optimized forSparseNumberVectors.classSparseLPNormDistanceLp-Norm, optimized forSparseNumberVectors.classSparseManhattanDistanceManhattan distance, optimized forSparseNumberVectors.classSparseMaximumDistanceMaximum distance, optimized forSparseNumberVectors.classSparseSquaredEuclideanDistanceSquared Euclidean distance function, optimized forSparseNumberVectors.classSquaredEuclideanDistanceSquared Euclidean distance, optimized forSparseNumberVectors.classWeightedEuclideanDistanceWeighted Euclidean distance forNumberVectors.classWeightedLPNormDistanceWeighted version of the Minkowski Lp norm distance forNumberVector.classWeightedManhattanDistanceWeighted version of the Manhattan (L1) metric.classWeightedMaximumDistanceWeighted version of the maximum distance function forNumberVectors.classWeightedSquaredEuclideanDistanceWeighted squared Euclidean distance forNumberVectors. -
Uses of Norm in elki.distance.subspace
Classes in elki.distance.subspace that implement Norm Modifier and Type Class Description classOnedimensionalDistanceDistance function that computes the distance between feature vectors as the absolute difference of their values in a specified dimension only.classSubspaceEuclideanDistanceEuclidean distance function betweenNumberVectors only in specified dimensions.classSubspaceLPNormDistanceLp-Norm distance function betweenNumberVectors only in specified dimensions.classSubspaceManhattanDistanceManhattan distance function betweenNumberVectors only in specified dimensions.classSubspaceMaximumDistanceMaximum distance function betweenNumberVectors only in specified dimensions.
-