Class VarianceRatioCriterion
- java.lang.Object
-
- elki.evaluation.clustering.internal.VarianceRatioCriterion
-
- All Implemented Interfaces:
Evaluator,ResultProcessor
@Reference(authors="R. B. Calinski, J. Harabasz", title="A dendrite method for cluster analysis", booktitle="Communications in Statistics - Theory and Methods 3(1)", url="https://doi.org/10.1080/03610927408827101", bibkey="doi:10.1080/03610927408827101") @Alias("calinski-harabasz") public class VarianceRatioCriterion extends java.lang.Object implements Evaluator
Compute the Variance Ratio Criterion of a data set, also known as Calinski-Harabasz index.Reference:
R. B. Calinski, J. Harabasz
A dendrite method for cluster analysis
Communications in Statistics - Theory and Methods 3(1)- Since:
- 0.7.0
- Author:
- Stephan Baier, Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classVarianceRatioCriterion.ParParameterization class.
-
Field Summary
Fields Modifier and Type Field Description private java.lang.StringkeyKey for logging statistics.private static LoggingLOGLogger for debug output.private NoiseHandlingnoiseOptionOption for noise handling.private booleanpenalizePenalize noise, ifNoiseHandling.IGNORE_NOISEis set.
-
Constructor Summary
Constructors Constructor Description VarianceRatioCriterion(NoiseHandling noiseOption, boolean penalize)Constructor.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description doubleevaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)Evaluate a single clustering.static intglobalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)Update the global centroid.voidprocessNewResult(java.lang.Object result)Process a result.
-
-
-
Field Detail
-
LOG
private static final Logging LOG
Logger for debug output.
-
noiseOption
private NoiseHandling noiseOption
Option for noise handling.
-
penalize
private boolean penalize
Penalize noise, ifNoiseHandling.IGNORE_NOISEis set.
-
key
private java.lang.String key
Key for logging statistics.
-
-
Constructor Detail
-
VarianceRatioCriterion
public VarianceRatioCriterion(NoiseHandling noiseOption, boolean penalize)
Constructor.- Parameters:
noiseOption- Flag to control noise handlingpenalize- noise, ifNoiseHandling.IGNORE_NOISEis set.
-
-
Method Detail
-
evaluateClustering
public double evaluateClustering(Relation<? extends NumberVector> rel, Clustering<?> c)
Evaluate a single clustering.- Parameters:
rel- Data relationc- Clustering- Returns:
- Variance Ratio Criteria
-
globalCentroid
public static int globalCentroid(Centroid overallCentroid, Relation<? extends NumberVector> rel, java.util.List<? extends Cluster<?>> clusters, NumberVector[] centroids, NoiseHandling noiseOption)
Update the global centroid.- Parameters:
overallCentroid- Centroid to udpaterel- Data relationclusters- Clusterscentroids- Cluster centroids- Returns:
- Number of clusters
-
processNewResult
public void processNewResult(java.lang.Object result)
Description copied from interface:ResultProcessorProcess a result.- Specified by:
processNewResultin interfaceResultProcessor- Parameters:
result- Newly added result subtree.
-
-