Uses of Interface
elki.math.statistics.distribution.estimator.DistributionEstimator
-
Packages that use DistributionEstimator Package Description elki.datasource.filter.normalization.columnwise Normalizations operating on columns / variates; where each column is treated independently.elki.math.statistics.distribution.estimator Estimators for statistical distributions.elki.math.statistics.distribution.estimator.meta Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g., on a trimmed data set, or as an ensemble. -
-
Uses of DistributionEstimator in elki.datasource.filter.normalization.columnwise
Fields in elki.datasource.filter.normalization.columnwise with type parameters of type DistributionEstimator Modifier and Type Field Description private java.util.List<? extends DistributionEstimator<?>>AttributeWiseBetaNormalization.Par. estimatorsStores the distribution estimatorsprotected java.util.List<? extends DistributionEstimator<?>>AttributeWiseCDFNormalization. estimatorsStores the distribution estimatorsprivate java.util.List<? extends DistributionEstimator<?>>AttributeWiseCDFNormalization.Par. estimatorsStores the distribution estimatorsConstructor parameters in elki.datasource.filter.normalization.columnwise with type arguments of type DistributionEstimator Constructor Description AttributeWiseBetaNormalization(java.util.List<? extends DistributionEstimator<?>> estimators, double alpha)Constructor.AttributeWiseCDFNormalization(java.util.List<? extends DistributionEstimator<?>> estimators)Constructor. -
Uses of DistributionEstimator in elki.math.statistics.distribution.estimator
Subinterfaces of DistributionEstimator in elki.math.statistics.distribution.estimator Modifier and Type Interface Description interfaceLMMDistributionEstimator<D extends Distribution>Interface for distribution estimators based on the methods of L-Moments (LMM).interfaceLogMADDistributionEstimator<D extends Distribution>Distribuition estimators that use the method of moments (MOM) in logspace.interfaceLogMeanVarianceEstimator<D extends Distribution>Estimators that work on Mean and Variance only (i.e. the first two moments only).interfaceLogMOMDistributionEstimator<D extends Distribution>Distribution estimators that use the method of moments (MOM) in logspace, i.e. that only need the statistical moments of a data set after logarithms.interfaceMADDistributionEstimator<D extends Distribution>Distribuition estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.interfaceMeanVarianceDistributionEstimator<D extends Distribution>Interface for estimators that only need mean and variance.interfaceMOMDistributionEstimator<D extends Distribution>Distribution estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.Classes in elki.math.statistics.distribution.estimator that implement DistributionEstimator Modifier and Type Class Description classCauchyMADEstimatorEstimate Cauchy distribution parameters using Median and MAD.classEMGOlivierNorbergEstimatorNaive distribution estimation using mean and sample variance.classExpGammaExpMOMEstimatorSimple parameter estimation for the ExpGamma distribution.classExponentialLMMEstimatorEstimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).classExponentialMADEstimatorEstimate Exponential distribution parameters using Median and MAD.classExponentialMedianEstimatorEstimate Exponential distribution parameters using Median and MAD.classExponentialMOMEstimatorEstimate Exponential distribution parameters using the mean, which is the maximum-likelihood estimate (MLE), but not very robust.classGammaChoiWetteEstimatorEstimate distribution parameters using the method by Choi and Wette.classGammaLMMEstimatorEstimate the parameters of a Gamma Distribution, using the methods of L-Moments (LMM).classGammaMOMEstimatorSimple parameter estimation for the Gamma distribution.classGeneralizedExtremeValueLMMEstimatorEstimate the parameters of a Generalized Extreme Value Distribution, using the methods of L-Moments (LMM).classGeneralizedLogisticAlternateLMMEstimatorEstimate the parameters of a Generalized Logistic Distribution, using the methods of L-Moments (LMM).classGeneralizedParetoLMMEstimatorEstimate the parameters of a Generalized Pareto Distribution (GPD), using the methods of L-Moments (LMM).classGumbelLMMEstimatorEstimate the parameters of a Gumbel Distribution, using the methods of L-Moments (LMM).classGumbelMADEstimatorParameter estimation via median and median absolute deviation from median (MAD).classInverseGaussianMLEstimatorEstimate parameter of the inverse Gaussian (Wald) distribution.classInverseGaussianMOMEstimatorEstimate parameter of the inverse Gaussian (Wald) distribution.classLaplaceLMMEstimatorEstimate Laplace distribution parameters using the method of L-Moments (LMM).classLaplaceMADEstimatorEstimate Laplace distribution parameters using Median and MAD.classLaplaceMLEEstimatorEstimate Laplace distribution parameters using Median and mean deviation from median.classLogGammaLogMOMEstimatorSimple parameter estimation for the LogGamma distribution.classLogisticLMMEstimatorEstimate the parameters of a Logistic Distribution, using the methods of L-Moments (LMM).classLogisticMADEstimatorEstimate Logistic distribution parameters using Median and MAD.classLogLogisticMADEstimatorEstimate Logistic distribution parameters using Median and MAD.classLogNormalBilkovaLMMEstimatorAlternate estimate the parameters of a log Gamma Distribution, using the methods of L-Moments (LMM) for the Generalized Normal Distribution.classLogNormalLevenbergMarquardtKDEEstimatorDistribution parameter estimation using Levenberg-Marquardt iterative optimization and a kernel density estimation.classLogNormalLMMEstimatorEstimate the parameters of a log Normal Distribution, using the methods of L-Moments (LMM) for the Generalized Normal Distribution.classLogNormalLogMADEstimatorEstimator using Medians.classLogNormalLogMOMEstimatorNaive distribution estimation using mean and sample variance.classNormalLevenbergMarquardtKDEEstimatorDistribution parameter estimation using Levenberg-Marquardt iterative optimization and a kernel density estimation.classNormalLMMEstimatorEstimate the parameters of a normal distribution using the method of L-Moments (LMM).classNormalMADEstimatorEstimator using Medians.classNormalMOMEstimatorNaive maximum-likelihood estimations for the normal distribution using mean and sample variance.classRayleighLMMEstimatorEstimate the scale parameter of a (non-shifted) RayleighDistribution using the method of L-Moments (LMM).classRayleighMADEstimatorEstimate the parameters of a RayleighDistribution using the MAD.classRayleighMLEEstimatorEstimate the scale parameter of a (non-shifted) RayleighDistribution using a maximum likelihood estimate.classSkewGNormalLMMEstimatorEstimate the parameters of a skew Normal Distribution (Hoskin's Generalized Normal Distribution), using the methods of L-Moments (LMM).classUniformEnhancedMinMaxEstimatorSlightly improved estimation, that takes sample size into account and enhances the interval appropriately.classUniformLMMEstimatorEstimate the parameters of a normal distribution using the method of L-Moments (LMM).classUniformMADEstimatorEstimate Uniform distribution parameters using Median and MAD.classUniformMinMaxEstimatorEstimate the uniform distribution by computing min and max.classWeibullLMMEstimatorEstimate parameters of the Weibull distribution using the method of L-Moments (LMM).classWeibullLogMADEstimatorParameter estimation via median and median absolute deviation from median (MAD). -
Uses of DistributionEstimator in elki.math.statistics.distribution.estimator.meta
Classes in elki.math.statistics.distribution.estimator.meta that implement DistributionEstimator Modifier and Type Class Description classBestFitEstimatorA meta estimator that will try a number of (inexpensive) estimations, then choose whichever works best.classTrimmedEstimator<D extends Distribution>Trimmed wrapper around other estimators.classWinsorizingEstimator<D extends Distribution>Winsorizing or Georgization estimator.Fields in elki.math.statistics.distribution.estimator.meta declared as DistributionEstimator Modifier and Type Field Description (package private) DistributionEstimator<?>BestFitEstimator.BestFit. estBest estimator.private DistributionEstimator<D>TrimmedEstimator. innerDistribution estimator to use.private DistributionEstimator<D>TrimmedEstimator.Par. innerDistribution estimator to use.private DistributionEstimator<D>WinsorizingEstimator. innerDistribution estimator to use.private DistributionEstimator<D>WinsorizingEstimator.Par. innerDistribution estimator to use.Methods in elki.math.statistics.distribution.estimator.meta with parameters of type DistributionEstimator Modifier and Type Method Description voidBestFitEstimator.BestFit. test(DistributionEstimator<?> est, Distribution d)Test the goodness of fit, keep the best.private voidBestFitEstimator. warnIfDebugging(java.lang.ArithmeticException e, DistributionEstimator<?> est)Warn on arithmetic errors, if debug logging is enabledConstructors in elki.math.statistics.distribution.estimator.meta with parameters of type DistributionEstimator Constructor Description TrimmedEstimator(DistributionEstimator<D> inner, double trim)Constructor.WinsorizingEstimator(DistributionEstimator<D> inner, double winsorize)Constructor.
-