Package elki.clustering.correlation
Correlation clustering algorithms.
-
Class Summary Class Description CASH The CASH algorithm is a subspace clustering algorithm based on the Hough transform.CASH.Par Parameterization class.COPAC COPAC is an algorithm to partition a database according to the correlation dimension of its objects and to then perform an arbitrary clustering algorithm over the partitions.COPAC.Par Parameterization class.COPAC.Settings Class to wrap the COPAC settings.ERiC Performs correlation clustering on the data partitioned according to local correlation dimensionality and builds a hierarchy of correlation clusters that allows multiple inheritance from the clustering result.ERiC.Par Parameterization class.ERiC.Settings Class to wrap the ERiC settings.FourC 4C identifies local subgroups of data objects sharing a uniform correlation.FourC.Par Parameterization class.FourC.Settings Class wrapping the 4C parameter settings.FourC.Settings.Par Parameterization class for 4C settings.HiCO Implementation of the HiCO algorithm, an algorithm for detecting hierarchies of correlation clusters.HiCO.Par Parameterization class.LMCLUS Linear manifold clustering in high dimensional spaces by stochastic search.LMCLUS.Par Parameterization classLMCLUS.Separation Class to represent a linear manifold separationORCLUS ORCLUS: Arbitrarily ORiented projected CLUSter generation.ORCLUS.ORCLUSCluster Encapsulates the attributes of a cluster.ORCLUS.Par Parameterization class.ORCLUS.ProjectedEnergy Encapsulates the projected energy for a cluster.