Package elki.clustering.em.models
Interface BetulaClusterModel
-
- All Superinterfaces:
EMClusterModel<NumberVector,EMModel>
- All Known Implementing Classes:
DiagonalGaussianModel
,MultivariateGaussianModel
,SphericalGaussianModel
@Reference(authors="Andreas Lang and Erich Schubert", title="BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees", booktitle="Information Systems", url="https://doi.org/10.1016/j.is.2021.101918", bibkey="DBLP:journals/is/LangS22") public interface BetulaClusterModel extends EMClusterModel<NumberVector,EMModel>
Models usable in Betula EM clustering.References:
Andreas Lang and Erich Schubert
BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees
Information Systems- Since:
- 0.8.0
- Author:
- Erich Schubert
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
estimateLogDensity(ClusterFeature cf)
Estimate the log likelihood of a clustering feature.void
updateE(ClusterFeature cf, double prob)
Process one clustering feature in the E step.-
Methods inherited from interface elki.clustering.em.models.EMClusterModel
beginEStep, estimateLogDensity, finalizeCluster, finalizeEStep, finalizeFirstPassE, firstPassE, getWeight, needsTwoPass, setWeight, updateE
-
-
-
-
Method Detail
-
estimateLogDensity
double estimateLogDensity(ClusterFeature cf)
Estimate the log likelihood of a clustering feature.- Parameters:
cf
- ClusteringFeature- Returns:
- log likelihood
-
updateE
void updateE(ClusterFeature cf, double prob)
Process one clustering feature in the E step.- Parameters:
cf
- Clustering feature to process.prob
- weight of the clustering feature.
-
-