Class BIRCHKMeansPlusPlus
- java.lang.Object
-
- elki.clustering.hierarchical.birch.BIRCHKMeansPlusPlus
-
public class BIRCHKMeansPlusPlus extends java.lang.ObjectK-Means++-like initialization for BIRCH k-means; this cannot be used to initialize regular k-means, useKMeansPlusPlusinstead.- Since:
- 0.8.0
- Author:
- Andreas Lang
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classBIRCHKMeansPlusPlus.ParParameterization class.
-
Field Summary
Fields Modifier and Type Field Description protected RandomFactoryrandomRandom generatorprotected double[]weightsWeights
-
Constructor Summary
Constructors Constructor Description BIRCHKMeansPlusPlus(RandomFactory rnd)Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description private doubledistance(double[] ds, double[] ds2)Calculates distance between two vectors.private doubleinitialWeights(double[] first, double[][] x)Initialize the weight list.double[][]run(double[][] x, int k)Perform k-means++ initialization.private doubleupdateWeights(double[] latest, double[][] x)Update the weight list.
-
-
-
Field Detail
-
random
protected RandomFactory random
Random generator
-
weights
protected double[] weights
Weights
-
-
Constructor Detail
-
BIRCHKMeansPlusPlus
public BIRCHKMeansPlusPlus(RandomFactory rnd)
Constructor.- Parameters:
rnd- Random generator.
-
-
Method Detail
-
run
public double[][] run(double[][] x, int k)Perform k-means++ initialization.- Parameters:
x- Input vectors.k- K- Returns:
- Initial cluster centers
-
initialWeights
private double initialWeights(double[] first, double[][] x)Initialize the weight list.- Parameters:
first- Id of first mean.x- Input data.- Returns:
- Sum of weights
-
distance
private double distance(double[] ds, double[] ds2)Calculates distance between two vectors.- Parameters:
ds- First Vectords2- Second Vector- Returns:
- Vector
-
updateWeights
private double updateWeights(double[] latest, double[][] x)Update the weight list.- Parameters:
latest- Latest center- Returns:
- Weight sum
-
-