private boolean |
CFTree.add(ClusteringFeature[] children,
ClusteringFeature child) |
Add a node to the first unused slot.
|
protected void |
ClusteringFeature.addToStatistics(ClusteringFeature other) |
Merge an other clustering features.
|
private int |
BIRCHLloydKMeans.assignToNearestCluster(int[] assignment,
double[][] means,
double[][] cfmeans,
ClusteringFeature[] cfs,
int[] weights) |
Assign each element to nearest cluster.
|
private double[] |
BIRCHLloydKMeans.calculateVariances(int[] assignment,
double[][] means,
ClusteringFeature[] cfs,
int[] weights) |
Calculate variance of clusters based on clustering features.
|
private CFTree.TreeNode |
CFTree.insert(CFTree.TreeNode node,
ClusteringFeature nleaf) |
Recursive insertion.
|
private double[][] |
BIRCHLloydKMeans.kmeans(double[][] cfmeans,
ClusteringFeature[] cfs,
int[] assignment,
int[] weights) |
Perform k-means clustering.
|
private double[][] |
BIRCHLloydKMeans.means(int[] assignment,
double[][] means,
ClusteringFeature[] cfs,
int[] weights) |
Calculate means of clusters.
|
protected java.lang.StringBuilder |
CFTree.printDebug(java.lang.StringBuilder buf,
ClusteringFeature n,
int d) |
Utility function for debugging.
|
private CFTree.TreeNode |
CFTree.split(CFTree.TreeNode node,
ClusteringFeature newchild) |
Split an overfull node.
|
double |
BIRCHAbsorptionCriterion.squaredCriterion(ClusteringFeature f1,
ClusteringFeature f2) |
Quality when merging two CFs.
|
double |
BIRCHAbsorptionCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
Quality of a CF when adding a data point
|
double |
DiameterCriterion.squaredCriterion(ClusteringFeature f1,
ClusteringFeature f2) |
|
double |
DiameterCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
|
double |
EuclideanDistanceCriterion.squaredCriterion(ClusteringFeature f1,
ClusteringFeature f2) |
|
double |
EuclideanDistanceCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
|
double |
RadiusCriterion.squaredCriterion(ClusteringFeature f1,
ClusteringFeature f2) |
|
double |
RadiusCriterion.squaredCriterion(ClusteringFeature f1,
NumberVector n) |
|
double |
AverageInterclusterDistance.squaredDistance(ClusteringFeature cf1,
ClusteringFeature cf2) |
|
double |
AverageInterclusterDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
|
double |
AverageIntraclusterDistance.squaredDistance(ClusteringFeature cf1,
ClusteringFeature cf2) |
|
double |
AverageIntraclusterDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
|
double |
BIRCHDistance.squaredDistance(ClusteringFeature c1,
ClusteringFeature c2) |
Distance between two clustering features.
|
double |
BIRCHDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
Distance of a vector to a clustering feature.
|
double |
CentroidEuclideanDistance.squaredDistance(ClusteringFeature v,
ClusteringFeature cf) |
|
double |
CentroidEuclideanDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
|
double |
CentroidManhattanDistance.squaredDistance(ClusteringFeature v,
ClusteringFeature cf) |
|
double |
CentroidManhattanDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
|
double |
VarianceIncreaseDistance.squaredDistance(ClusteringFeature cf1,
ClusteringFeature cf2) |
|
double |
VarianceIncreaseDistance.squaredDistance(NumberVector v,
ClusteringFeature cf) |
|