Class CFKPlusPlusTrunk
- java.lang.Object
-
- elki.clustering.kmeans.initialization.betula.AbstractCFKMeansInitialization
-
- elki.clustering.kmeans.initialization.betula.CFKPlusPlusLeaves
-
- elki.clustering.kmeans.initialization.betula.CFKPlusPlusTrunk
-
@Alias("trunk") @Reference(authors="Andreas Lang and Erich Schubert", title="BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees", booktitle="Information Systems", url="https://doi.org/10.1016/j.is.2021.101918", bibkey="DBLP:journals/is/LangS22") public class CFKPlusPlusTrunk extends CFKPlusPlusLeaves
Trunk strategy for initializing k-means with BETULA: only the nodes up to a particular level are considered for k-means++ style initialization.References:
Andreas Lang and Erich Schubert
BETULA: Fast Clustering of Large Data with Improved BIRCH CF-Trees
Information Systems- Since:
- 0.8.0
- Author:
- Andreas Lang
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
CFKPlusPlusTrunk.Par
Parameterization class.
-
Field Summary
-
Fields inherited from class elki.clustering.kmeans.initialization.betula.CFKPlusPlusLeaves
distance, firstUniform
-
Fields inherited from class elki.clustering.kmeans.initialization.betula.AbstractCFKMeansInitialization
rf
-
-
Constructor Summary
Constructors Constructor Description CFKPlusPlusTrunk(CFInitWeight dist, boolean firstUniform, RandomFactory rf)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double[][]
chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
Build the initial models.-
Methods inherited from class elki.clustering.kmeans.initialization.betula.CFKPlusPlusLeaves
run
-
-
-
-
Constructor Detail
-
CFKPlusPlusTrunk
public CFKPlusPlusTrunk(CFInitWeight dist, boolean firstUniform, RandomFactory rf)
Constructor.- Parameters:
dist
- distance functionfirstUniform
- choose the first center uniformly from leavesrf
- random generator
-
-
Method Detail
-
chooseInitialMeans
public double[][] chooseInitialMeans(CFTree<?> tree, java.util.List<? extends ClusterFeature> cfs, int k)
Description copied from class:AbstractCFKMeansInitialization
Build the initial models.- Overrides:
chooseInitialMeans
in classCFKPlusPlusLeaves
- Parameters:
tree
- CF treecfs
- Cluster features of the tree (may be ignored for tree-based initializations, should be an array list for efficiency)k
- Number of clusters.- Returns:
- initial cluster means
-
-