Package elki.clustering.kmeans.quality
Class WithinClusterVariance
- java.lang.Object
-
- elki.clustering.kmeans.quality.AbstractKMeansQualityMeasure<NumberVector>
-
- elki.clustering.kmeans.quality.WithinClusterVariance
-
- All Implemented Interfaces:
KMeansQualityMeasure<NumberVector>
public class WithinClusterVariance extends AbstractKMeansQualityMeasure<NumberVector>
Class for computing the variance in a clustering result (sum-of-squares).- Since:
- 0.6.0
- Author:
- Stephan Baier, Erich Schubert
-
-
Constructor Summary
Constructors Constructor Description WithinClusterVariance()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description boolean
isBetter(double currentCost, double bestCost)
Compare two scores.<V extends NumberVector>
doublequality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Calculates and returns the quality measure.-
Methods inherited from class elki.clustering.kmeans.quality.AbstractKMeansQualityMeasure
logLikelihood, numberOfFreeParameters, numPoints, varianceContributionOfCluster
-
-
-
-
Method Detail
-
quality
public <V extends NumberVector> double quality(Clustering<? extends MeanModel> clustering, NumberVectorDistance<? super V> distance, Relation<V> relation)
Description copied from interface:KMeansQualityMeasure
Calculates and returns the quality measure.- Type Parameters:
V
- Actual vector type (could be a subtype of O!)- Parameters:
clustering
- Clustering to analyzedistance
- Distance function to use (usually Euclidean or squared Euclidean!)relation
- Relation for accessing objects- Returns:
- quality measure
-
isBetter
public boolean isBetter(double currentCost, double bestCost)
Description copied from interface:KMeansQualityMeasure
Compare two scores.- Parameters:
currentCost
- New (candiate) cost/scorebestCost
- Existing best cost/score (may beNaN
)- Returns:
true
when the new score is better, or the old score isNaN
.
-
-