Package elki.clustering.kmeans.spherical
Class SphericalSimplifiedHamerlyKMeans.Instance
- java.lang.Object
-
- elki.clustering.kmeans.AbstractKMeans.Instance
-
- elki.clustering.kmeans.spherical.SphericalKMeans.Instance
-
- elki.clustering.kmeans.spherical.SphericalSimplifiedHamerlyKMeans.Instance
-
- Enclosing class:
- SphericalSimplifiedHamerlyKMeans<V extends NumberVector>
protected static class SphericalSimplifiedHamerlyKMeans.Instance extends SphericalKMeans.Instance
Inner instance, storing state for a single data set.- Author:
- Erich Schubert
-
-
Field Summary
Fields Modifier and Type Field Description (package private) double[]csimCluster self-similarity.(package private) WritableDoubleDataStorelsimSimilarity lower bound.(package private) double[][]newmeansScratch space for new means.(package private) double[][]sumsSum aggregate for the new mean.(package private) WritableDoubleDataStoreusimSimilarity upper bound.-
Fields inherited from class elki.clustering.kmeans.AbstractKMeans.Instance
assignment, clusters, diststat, isSquared, k, key, means, relation, varsum
-
-
Constructor Summary
Constructors Constructor Description Instance(Relation<? extends NumberVector> relation, double[][] means)Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected intassignToNearestCluster()Assign each object to the nearest cluster.protected LogginggetLogger()Get the class logger.protected intinitialAssignToNearestCluster()Perform initial cluster assignment.intiterate(int iteration)Main loop function.protected voidupdateBounds(double[] msim)Update the bounds for k-means.-
Methods inherited from class elki.clustering.kmeans.spherical.SphericalKMeans.Instance
distance, distance, distance, initialSeparation, means, meansFromSums, movedSimilarity, recomputeVariance, similarity, similarity, sqrtdistance, sqrtdistance
-
Methods inherited from class elki.clustering.kmeans.AbstractKMeans.Instance
buildResult, buildResult, computeSquaredSeparation, copyMeans, initialSeperation, movedDistance, recomputeSeperation, run, sqrtdistance
-
-
-
-
Field Detail
-
sums
double[][] sums
Sum aggregate for the new mean.
-
newmeans
double[][] newmeans
Scratch space for new means.
-
lsim
WritableDoubleDataStore lsim
Similarity lower bound.
-
usim
WritableDoubleDataStore usim
Similarity upper bound.
-
csim
double[] csim
Cluster self-similarity.
-
-
Constructor Detail
-
Instance
public Instance(Relation<? extends NumberVector> relation, double[][] means)
Constructor.- Parameters:
relation- Relationmeans- Initial means
-
-
Method Detail
-
iterate
public int iterate(int iteration)
Description copied from class:AbstractKMeans.InstanceMain loop function.- Overrides:
iteratein classSphericalKMeans.Instance- Parameters:
iteration- Iteration number (beginning at 1)- Returns:
- Number of reassigned points
-
initialAssignToNearestCluster
protected int initialAssignToNearestCluster()
Perform initial cluster assignment.- Returns:
- Number of changes (i.e., relation size)
-
assignToNearestCluster
protected int assignToNearestCluster()
Description copied from class:AbstractKMeans.InstanceAssign each object to the nearest cluster.- Overrides:
assignToNearestClusterin classSphericalKMeans.Instance- Returns:
- number of objects reassigned
-
updateBounds
protected void updateBounds(double[] msim)
Update the bounds for k-means.- Parameters:
msim- Similarity movement of centers
-
getLogger
protected Logging getLogger()
Description copied from class:AbstractKMeans.InstanceGet the class logger.- Overrides:
getLoggerin classSphericalKMeans.Instance- Returns:
- Logger
-
-