Uses of Interface
elki.clustering.kmedoids.initialization.KMedoidsInitialization
-
Packages that use KMedoidsInitialization Package Description elki.application.experiments Packaged experiments to make them easy to reproduce.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.silhouette Silhouette clustering algorithms.elki.index.idistance iDistance is a distance based indexing technique, using a reference points embedding. -
-
Uses of KMedoidsInitialization in elki.application.experiments
Fields in elki.application.experiments declared as KMedoidsInitialization Modifier and Type Field Description private KMedoidsInitialization<DBID>
ORLibBenchmark. init
Initialization method.private KMedoidsInitialization<DBID>
ORLibBenchmark.Par. init
Initialization method.Constructors in elki.application.experiments with parameters of type KMedoidsInitialization Constructor Description ORLibBenchmark(java.net.URI file, java.lang.Class<? extends ClusteringAlgorithm<?>> alg, KMedoidsInitialization<DBID> init, int k, RandomFactory rnd)
Constructor. -
Uses of KMedoidsInitialization in elki.clustering.kmeans.initialization
Classes in elki.clustering.kmeans.initialization that implement KMedoidsInitialization Modifier and Type Class Description class
FarthestPoints<O>
K-Means initialization by repeatedly choosing the farthest point (by the minimum distance to earlier points).class
FarthestSumPoints<O>
K-Means initialization by repeatedly choosing the farthest point (by the sum of distances to previous objects).class
FirstK<O>
Initialize K-means by using the first k objects as initial means.class
KMeansPlusPlus<O>
K-Means++ initialization for k-means.class
RandomlyChosen<O>
Initialize K-means by randomly choosing k existing elements as initial cluster centers. -
Uses of KMedoidsInitialization in elki.clustering.kmedoids
Fields in elki.clustering.kmedoids declared as KMedoidsInitialization Modifier and Type Field Description protected KMedoidsInitialization<O>
AlternatingKMedoids. initializer
Method to choose initial means.protected KMedoidsInitialization<V>
AlternatingKMedoids.Par. initializer
Initialization method.protected KMedoidsInitialization<O>
PAM. initializer
Method to choose initial means.protected KMedoidsInitialization<O>
PAM.Par. initializer
Method to choose initial means.Methods in elki.clustering.kmedoids that return types with arguments of type KMedoidsInitialization Modifier and Type Method Description protected java.lang.Class<? extends KMedoidsInitialization>
FastPAM.Par. defaultInitializer()
protected java.lang.Class<? extends KMedoidsInitialization>
PAM.Par. defaultInitializer()
Default initialization method.Constructors in elki.clustering.kmedoids with parameters of type KMedoidsInitialization Constructor Description AlternatingKMedoids(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.CLARA(Distance<? super V> distance, int k, int maxiter, KMedoidsInitialization<V> initializer, int numsamples, double sampling, boolean keepmed, RandomFactory random)
Constructor.EagerPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.FastCLARA(Distance<? super V> distance, int k, int maxiter, KMedoidsInitialization<V> initializer, double fasttol, int numsamples, double sampling, boolean keepmed, RandomFactory random)
Constructor.FasterCLARA(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer, int numsamples, double sampling, boolean keepmed, RandomFactory random)
Constructor.FasterPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.FastPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.FastPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer, double fasttol)
Constructor.FastPAM1(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.PAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.ReynoldsPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.SingleAssignmentKMedoids(Distance<? super O> distance, int k, KMedoidsInitialization<O> initializer)
Constructor. -
Uses of KMedoidsInitialization in elki.clustering.kmedoids.initialization
Classes in elki.clustering.kmedoids.initialization that implement KMedoidsInitialization Modifier and Type Class Description class
AlternateRefinement<O>
Meta-Initialization for k-medoids by performing one (or many) k-means-style iteration.class
BUILD<O>
PAM initialization for k-means (and of course, for PAM).class
GreedyG<O>
Initialization method for k-medoids that combines the Greedy (PAMBUILD
) with "alternate" refinement steps.class
KMedoidsKMedoidsInitialization<O>
Initialize k-medoids with k-medoids, for methods such as PAMSIL.
This could also be used to initialize, e.g., PAM with CLARA.class
LAB<O>
Linear approximative BUILD (LAB) initialization for FastPAM (and k-means).class
ParkJun<O>
Initialization method proposed by Park and Jun.Fields in elki.clustering.kmedoids.initialization declared as KMedoidsInitialization Modifier and Type Field Description private KMedoidsInitialization<O>
AlternateRefinement. inner
Inner initialization.private KMedoidsInitialization<O>
AlternateRefinement.Par. inner
Inner initialization.Constructors in elki.clustering.kmedoids.initialization with parameters of type KMedoidsInitialization Constructor Description AlternateRefinement(KMedoidsInitialization<O> inner, int maxiter)
Constructor. -
Uses of KMedoidsInitialization in elki.clustering.silhouette
Methods in elki.clustering.silhouette that return types with arguments of type KMedoidsInitialization Modifier and Type Method Description protected java.lang.Class<? extends KMedoidsInitialization>
FastMSC.Par. defaultInitializer()
protected java.lang.Class<? extends KMedoidsInitialization>
PAMSIL.Par. defaultInitializer()
Constructors in elki.clustering.silhouette with parameters of type KMedoidsInitialization Constructor Description FasterMSC(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.FastMSC(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.PAMMEDSIL(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor.PAMSIL(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)
Constructor. -
Uses of KMedoidsInitialization in elki.index.idistance
Fields in elki.index.idistance declared as KMedoidsInitialization Modifier and Type Field Description (package private) KMedoidsInitialization<V>
InMemoryIDistanceIndex.Factory. initialization
Initialization method.(package private) KMedoidsInitialization<V>
InMemoryIDistanceIndex.Factory.Par. initialization
Initialization method.private KMedoidsInitialization<O>
InMemoryIDistanceIndex. initialization
Initialization method.Constructors in elki.index.idistance with parameters of type KMedoidsInitialization Constructor Description Factory(Distance<? super V> distance, KMedoidsInitialization<V> initialization, int k)
Constructor.InMemoryIDistanceIndex(Relation<O> relation, DistanceQuery<O> distance, KMedoidsInitialization<O> initialization, int numref)
Constructor.
-