Uses of Interface
elki.clustering.kmedoids.initialization.KMedoidsInitialization
-
Packages that use KMedoidsInitialization Package Description elki.application.experiments Packaged experiments to make them easy to reproduce.elki.clustering.kmeans.initialization Initialization strategies for k-means.elki.clustering.kmedoids K-medoids clustering (PAM).elki.clustering.kmedoids.initialization elki.clustering.silhouette Silhouette clustering algorithms.elki.index.idistance iDistance is a distance based indexing technique, using a reference points embedding. -
-
Uses of KMedoidsInitialization in elki.application.experiments
Fields in elki.application.experiments declared as KMedoidsInitialization Modifier and Type Field Description private KMedoidsInitialization<DBID>ORLibBenchmark. initInitialization method.private KMedoidsInitialization<DBID>ORLibBenchmark.Par. initInitialization method.Constructors in elki.application.experiments with parameters of type KMedoidsInitialization Constructor Description ORLibBenchmark(java.net.URI file, java.lang.Class<? extends ClusteringAlgorithm<?>> alg, KMedoidsInitialization<DBID> init, int k, RandomFactory rnd)Constructor. -
Uses of KMedoidsInitialization in elki.clustering.kmeans.initialization
Classes in elki.clustering.kmeans.initialization that implement KMedoidsInitialization Modifier and Type Class Description classFarthestPoints<O>K-Means initialization by repeatedly choosing the farthest point (by the minimum distance to earlier points).classFarthestSumPoints<O>K-Means initialization by repeatedly choosing the farthest point (by the sum of distances to previous objects).classFirstK<O>Initialize K-means by using the first k objects as initial means.classKMeansPlusPlus<O>K-Means++ initialization for k-means.classRandomlyChosen<O>Initialize K-means by randomly choosing k existing elements as initial cluster centers. -
Uses of KMedoidsInitialization in elki.clustering.kmedoids
Fields in elki.clustering.kmedoids declared as KMedoidsInitialization Modifier and Type Field Description protected KMedoidsInitialization<O>AlternatingKMedoids. initializerMethod to choose initial means.protected KMedoidsInitialization<V>AlternatingKMedoids.Par. initializerInitialization method.protected KMedoidsInitialization<O>PAM. initializerMethod to choose initial means.protected KMedoidsInitialization<O>PAM.Par. initializerMethod to choose initial means.Methods in elki.clustering.kmedoids that return types with arguments of type KMedoidsInitialization Modifier and Type Method Description protected java.lang.Class<? extends KMedoidsInitialization>FastPAM.Par. defaultInitializer()protected java.lang.Class<? extends KMedoidsInitialization>PAM.Par. defaultInitializer()Default initialization method.Constructors in elki.clustering.kmedoids with parameters of type KMedoidsInitialization Constructor Description AlternatingKMedoids(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.CLARA(Distance<? super V> distance, int k, int maxiter, KMedoidsInitialization<V> initializer, int numsamples, double sampling, boolean keepmed, RandomFactory random)Constructor.EagerPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.FastCLARA(Distance<? super V> distance, int k, int maxiter, KMedoidsInitialization<V> initializer, double fasttol, int numsamples, double sampling, boolean keepmed, RandomFactory random)Constructor.FasterCLARA(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer, int numsamples, double sampling, boolean keepmed, RandomFactory random)Constructor.FasterPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.FastPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.FastPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer, double fasttol)Constructor.FastPAM1(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.PAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.ReynoldsPAM(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.SingleAssignmentKMedoids(Distance<? super O> distance, int k, KMedoidsInitialization<O> initializer)Constructor. -
Uses of KMedoidsInitialization in elki.clustering.kmedoids.initialization
Classes in elki.clustering.kmedoids.initialization that implement KMedoidsInitialization Modifier and Type Class Description classAlternateRefinement<O>Meta-Initialization for k-medoids by performing one (or many) k-means-style iteration.classBUILD<O>PAM initialization for k-means (and of course, for PAM).classGreedyG<O>Initialization method for k-medoids that combines the Greedy (PAMBUILD) with "alternate" refinement steps.classKMedoidsKMedoidsInitialization<O>Initialize k-medoids with k-medoids, for methods such as PAMSIL.
This could also be used to initialize, e.g., PAM with CLARA.classLAB<O>Linear approximative BUILD (LAB) initialization for FastPAM (and k-means).classParkJun<O>Initialization method proposed by Park and Jun.Fields in elki.clustering.kmedoids.initialization declared as KMedoidsInitialization Modifier and Type Field Description private KMedoidsInitialization<O>AlternateRefinement. innerInner initialization.private KMedoidsInitialization<O>AlternateRefinement.Par. innerInner initialization.Constructors in elki.clustering.kmedoids.initialization with parameters of type KMedoidsInitialization Constructor Description AlternateRefinement(KMedoidsInitialization<O> inner, int maxiter)Constructor. -
Uses of KMedoidsInitialization in elki.clustering.silhouette
Methods in elki.clustering.silhouette that return types with arguments of type KMedoidsInitialization Modifier and Type Method Description protected java.lang.Class<? extends KMedoidsInitialization>FastMSC.Par. defaultInitializer()protected java.lang.Class<? extends KMedoidsInitialization>PAMSIL.Par. defaultInitializer()Constructors in elki.clustering.silhouette with parameters of type KMedoidsInitialization Constructor Description FasterMSC(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.FastMSC(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.PAMMEDSIL(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor.PAMSIL(Distance<? super O> distance, int k, int maxiter, KMedoidsInitialization<O> initializer)Constructor. -
Uses of KMedoidsInitialization in elki.index.idistance
Fields in elki.index.idistance declared as KMedoidsInitialization Modifier and Type Field Description (package private) KMedoidsInitialization<V>InMemoryIDistanceIndex.Factory. initializationInitialization method.(package private) KMedoidsInitialization<V>InMemoryIDistanceIndex.Factory.Par. initializationInitialization method.private KMedoidsInitialization<O>InMemoryIDistanceIndex. initializationInitialization method.Constructors in elki.index.idistance with parameters of type KMedoidsInitialization Constructor Description Factory(Distance<? super V> distance, KMedoidsInitialization<V> initialization, int k)Constructor.InMemoryIDistanceIndex(Relation<O> relation, DistanceQuery<O> distance, KMedoidsInitialization<O> initialization, int numref)Constructor.
-