Package elki.evaluation.outlier
Class OutlierThresholdClustering
- java.lang.Object
-
- elki.evaluation.outlier.OutlierThresholdClustering
-
- All Implemented Interfaces:
Evaluator
,ResultProcessor
public class OutlierThresholdClustering extends java.lang.Object implements Evaluator
Pseudo clustering algorithm that builds clusters based on their outlier score. Useful for transforming a numeric outlier score into a 2-class dataset.- Since:
- 0.5.0
- Author:
- Erich Schubert
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
OutlierThresholdClustering.Par
Parameterization helper
-
Field Summary
Fields Modifier and Type Field Description (package private) ScalingFunction
scaling
Scaling function to use(package private) double[]
threshold
Thresholds to use
-
Constructor Summary
Constructors Constructor Description OutlierThresholdClustering(ScalingFunction scaling, double[] threshold)
Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
processNewResult(java.lang.Object newResult)
Process a result.private Clustering<Model>
split(OutlierResult or)
-
-
-
Field Detail
-
scaling
ScalingFunction scaling
Scaling function to use
-
threshold
double[] threshold
Thresholds to use
-
-
Constructor Detail
-
OutlierThresholdClustering
public OutlierThresholdClustering(ScalingFunction scaling, double[] threshold)
Constructor.- Parameters:
scaling
- Scaling functionthreshold
- Threshold
-
-
Method Detail
-
processNewResult
public void processNewResult(java.lang.Object newResult)
Description copied from interface:ResultProcessor
Process a result.- Specified by:
processNewResult
in interfaceResultProcessor
- Parameters:
newResult
- Newly added result subtree.
-
split
private Clustering<Model> split(OutlierResult or)
-
-