Uses of Class
elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
-
Packages that use AbstractMaterializeKNNPreprocessor Package Description elki.database.query.knn Prepared queries for k nearest neighbor (kNN) queries.elki.index.preprocessed.knn Indexes providing KNN and rKNN data.elki.visualization.visualizers.scatterplot.selection Visualizers for object selection based on 2D projections. -
-
Uses of AbstractMaterializeKNNPreprocessor in elki.database.query.knn
Fields in elki.database.query.knn declared as AbstractMaterializeKNNPreprocessor Modifier and Type Field Description private AbstractMaterializeKNNPreprocessor<?>
PreprocessorKNNQuery. preprocessor
The last preprocessor resultMethods in elki.database.query.knn that return AbstractMaterializeKNNPreprocessor Modifier and Type Method Description AbstractMaterializeKNNPreprocessor<?>
PreprocessorKNNQuery. getPreprocessor()
Get the preprocessor instance.Constructors in elki.database.query.knn with parameters of type AbstractMaterializeKNNPreprocessor Constructor Description PreprocessorKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor.PreprocessorSqrtKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor.PreprocessorSquaredKNNQuery(Relation<?> relation, AbstractMaterializeKNNPreprocessor<?> preprocessor)
Constructor. -
Uses of AbstractMaterializeKNNPreprocessor in elki.index.preprocessed.knn
Subclasses of AbstractMaterializeKNNPreprocessor in elki.index.preprocessed.knn Modifier and Type Class Description class
CachedDoubleDistanceKNNPreprocessor<O>
Preprocessor that loads an existing cached kNN result.class
KNNJoinMaterializeKNNPreprocessor<V extends SpatialComparable>
Class to materialize the kNN using a spatial join on an R-tree.class
MaterializeKNNAndRKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors and the reverse k nearest neighbors (and their distances) to each database object.class
MaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.class
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.class
NNDescent<O>
NN-descent (also known as KNNGraph) is an approximate nearest neighbor search algorithm beginning with a random sample, then iteratively refining this sample until.class
PartitionApproximationMaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.class
RandomSampleKNNPreprocessor<O>
Class that computed the kNN only on a random sample.class
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves.class
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector>
A preprocessor for annotation of the k nearest neighbors (and their distances) to each database object.Methods in elki.index.preprocessed.knn that return AbstractMaterializeKNNPreprocessor Modifier and Type Method Description abstract AbstractMaterializeKNNPreprocessor<O>
AbstractMaterializeKNNPreprocessor.Factory. instantiate(Relation<O> relation)
-
Uses of AbstractMaterializeKNNPreprocessor in elki.visualization.visualizers.scatterplot.selection
Fields in elki.visualization.visualizers.scatterplot.selection declared as AbstractMaterializeKNNPreprocessor Modifier and Type Field Description private AbstractMaterializeKNNPreprocessor<? extends NumberVector>
DistanceFunctionVisualization.Instance. result
The selection result we work onMethods in elki.visualization.visualizers.scatterplot.selection with parameters of type AbstractMaterializeKNNPreprocessor Modifier and Type Method Description static double
DistanceFunctionVisualization. getLPNormP(AbstractMaterializeKNNPreprocessor<?> kNN)
Get the "p" value of an Lp norm.static boolean
DistanceFunctionVisualization. isAngularDistance(AbstractMaterializeKNNPreprocessor<?> kNN)
Test whether the given preprocessor used an angular distance function
-