Package elki.math.linearalgebra.pca
Principal Component Analysis (PCA) and eigenvector processing.
-
Interface Summary Interface Description CovarianceMatrixBuilder Interface for computing covariance matrixes on a data set. -
Class Summary Class Description AutotuningPCA Performs a self-tuning local PCA based on the covariance matrices of given objects.AutotuningPCA.Cand CandidateAutotuningPCA.Par Parameterization class.EigenPair Helper class which encapsulates an eigenvector and its corresponding eigenvalue.PCAFilteredResult Result class for a filtered PCA.PCAResult Result class for Principal Component Analysis with some convenience methodsPCARunner Class to run PCA on given data.PCARunner.Par Parameterization class.RANSACCovarianceMatrixBuilder RANSAC based approach to a more robust covariance matrix computation.RANSACCovarianceMatrixBuilder.Par Parameterization classStandardCovarianceMatrixBuilder Class for building a "traditional" covariance matrix viaCovarianceMatrix
.WeightedCovarianceMatrixBuilder CovarianceMatrixBuilder
with weights.WeightedCovarianceMatrixBuilder.Par Parameterization class.