Package elki.math.linearalgebra.pca.weightfunctions
Weight functions used in weighted PCA via
WeightedCovarianceMatrixBuilder
.-
Interface Summary Interface Description WeightFunction WeightFunction interface that allows the use of various distance-based weight functions. -
Class Summary Class Description ConstantWeight Constant weight function.ErfcStddevWeight Gaussian Error Function Weight function, scaled using stddev using: erfc(1√2distanceσ).ErfcWeight Gaussian Error Function Weight function, scaled such that the result it 0.1 when the distance is the maximum using: erfc(1.1630871536766736distancemax).ExponentialStddevWeight Exponential Weight function, scaled using the standard deviation using: σexp(−12distanceσ).ExponentialWeight Exponential Weight function, scaled such that the result it 0.1 at distance equal max, so it does not completely disappear using: exp(−2.3025850929940455distancemax)GaussStddevWeight Gaussian weight function, scaled using standard deviation 1√2πexp(−dist22σ2)GaussWeight Gaussian weight function, scaled such that the result it 0.1 when distance equals the maximum, using exp(−2.3025850929940455dist2max2).InverseLinearWeight Inverse linear weight function using .1+0.9distancemax.InverseProportionalStddevWeight Inverse proportional weight function, scaled using the standard deviation using: 1/(1+distanceσ)InverseProportionalWeight Inverse proportional weight function, scaled using the maximum using: 1/(1+distancemax)LinearWeight Linear weight function, scaled using the maximum such that it goes from 1.0 to 0.1 using: 1−0.9distancemaxQuadraticStddevWeight Quadratic weight function, scaled using the standard deviation: max{0.0,1.0−dist23σ2}.QuadraticWeight Quadratic weight function, scaled using the maximum to reach 0.1 at that point using: 1.0−0.9dist2max2}