Uses of Interface
elki.math.statistics.distribution.Distribution
-
Packages that use Distribution Package Description elki.clustering.biclustering Biclustering algorithms.elki.data.synthetic.bymodel Generator using a distribution model specified in an XML configuration file.elki.datasource.filter.cleaning Filters for data cleaning.elki.datasource.filter.normalization.columnwise Normalizations operating on columns / variates; where each column is treated independently.elki.datasource.filter.transform Data space transformations.elki.math.statistics.distribution Standard distributions, with random generation functionalities.elki.math.statistics.distribution.estimator Estimators for statistical distributions.elki.math.statistics.distribution.estimator.meta Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g., on a trimmed data set, or as an ensemble.elki.utilities.scaling.outlier Scaling of outlier scores, that require a statistical analysis of the occurring values. -
-
Uses of Distribution in elki.clustering.biclustering
Fields in elki.clustering.biclustering declared as Distribution Modifier and Type Field Description private Distribution
ChengAndChurch. dist
Distribution to sample random replacement values from.private Distribution
ChengAndChurch.Par. dist
Distribution of replacement values.Methods in elki.clustering.biclustering with parameters of type Distribution Modifier and Type Method Description protected void
ChengAndChurch.BiclusterCandidate. maskMatrix(double[][] mat, Distribution replacement, java.util.Random rnd)
Updates the mask with replacement values for all data in the given rows and columns.Constructors in elki.clustering.biclustering with parameters of type Distribution Constructor Description ChengAndChurch(double delta, double alpha, int n, Distribution dist, RandomFactory rnd)
Constructor. -
Uses of Distribution in elki.data.synthetic.bymodel
Fields in elki.data.synthetic.bymodel with type parameters of type Distribution Modifier and Type Field Description private java.util.List<Distribution>
GeneratorSingleCluster. axes
The distribution generators for each axisMethods in elki.data.synthetic.bymodel that return Distribution Modifier and Type Method Description Distribution
GeneratorSingleCluster. getDistribution(int i)
Get distribution along (generator) axis i.Methods in elki.data.synthetic.bymodel with parameters of type Distribution Modifier and Type Method Description void
GeneratorSingleCluster. addGenerator(Distribution gen, java.util.Random rnd)
Add a new generator to the cluster. -
Uses of Distribution in elki.datasource.filter.cleaning
Fields in elki.datasource.filter.cleaning declared as Distribution Modifier and Type Field Description private Distribution
ReplaceNaNWithRandomFilter. dist
Distribution to generate replacement values with.private Distribution
ReplaceNaNWithRandomFilter.Par. dist
Distribution to generate replacement values with.Constructors in elki.datasource.filter.cleaning with parameters of type Distribution Constructor Description ReplaceNaNWithRandomFilter(Distribution dist, RandomFactory rnd)
Constructor. -
Uses of Distribution in elki.datasource.filter.normalization.columnwise
Fields in elki.datasource.filter.normalization.columnwise with type parameters of type Distribution Modifier and Type Field Description protected java.util.List<Distribution>
AttributeWiseCDFNormalization. dists
Stores the estimated distributionsMethods in elki.datasource.filter.normalization.columnwise that return Distribution Modifier and Type Method Description protected Distribution
AttributeWiseCDFNormalization. findBestFit(java.util.List<V> col, AttributeWiseCDFNormalization.Adapter adapter, int d, double[] test)
Find the best fitting distribution. -
Uses of Distribution in elki.datasource.filter.transform
Fields in elki.datasource.filter.transform declared as Distribution Modifier and Type Field Description (package private) Distribution
HistogramJitterFilter. dist
Random generator. -
Uses of Distribution in elki.math.statistics.distribution
Classes in elki.math.statistics.distribution that implement Distribution Modifier and Type Class Description class
BetaDistribution
Beta Distribution with implementation of the regularized incomplete beta functionclass
CauchyDistribution
Cauchy distribution.class
ChiDistribution
Chi distribution.class
ChiSquaredDistribution
Chi-Squared distribution (a specialization of the Gamma distribution).class
ConstantDistribution
Pseudo distribution, that has a unique constant value.class
ExpGammaDistribution
Exp-Gamma Distribution, with random generation and density functions.class
ExponentialDistribution
Exponential distribution.class
ExponentiallyModifiedGaussianDistribution
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution) is a combination of a normal distribution and an exponential distribution.class
GammaDistribution
Gamma Distribution, with random generation and density functions.class
GeneralizedExtremeValueDistribution
Generalized Extreme Value (GEV) distribution, also known as Fisher–Tippett distribution.class
GeneralizedLogisticAlternateDistribution
Generalized logistic distribution.class
GeneralizedLogisticDistribution
Generalized logistic distribution.class
GeneralizedParetoDistribution
Generalized Pareto Distribution (GPD), popular for modeling long tail distributions.class
GumbelDistribution
Gumbel distribution, also known as Log-Weibull distribution.class
HaltonUniformDistribution
Halton sequences are a pseudo-uniform distribution.class
InverseGaussianDistribution
Inverse Gaussian distribution aka Wald distribution.class
KappaDistribution
Kappa distribution, by Hosking.class
LaplaceDistribution
Laplace distribution also known as double exponential distributionclass
LogGammaDistribution
Log-Gamma Distribution, with random generation and density functions.class
LogisticDistribution
Logistic distribution.class
LogLogisticDistribution
Log-Logistic distribution also known as Fisk distribution.class
LogNormalDistribution
Log-Normal distribution.class
NormalDistribution
Gaussian distribution aka normal distributionclass
PoissonDistribution
INCOMPLETE implementation of the poisson distribution.class
RayleighDistribution
Rayleigh distribution, a special case of the Weibull distribution.class
SkewGeneralizedNormalDistribution
Generalized normal distribution by adding a skew term, similar to lognormal distributions.class
StudentsTDistribution
Student's t distribution.class
UniformDistribution
Uniform distribution.class
WeibullDistribution
Weibull distribution. -
Uses of Distribution in elki.math.statistics.distribution.estimator
Classes in elki.math.statistics.distribution.estimator with type parameters of type Distribution Modifier and Type Interface Description interface
DistributionEstimator<D extends Distribution>
Estimate distribution parameters from a sample.interface
LMMDistributionEstimator<D extends Distribution>
Interface for distribution estimators based on the methods of L-Moments (LMM).interface
LogMADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM) in logspace.interface
LogMeanVarianceEstimator<D extends Distribution>
Estimators that work on Mean and Variance only (i.e. the first two moments only).interface
LogMOMDistributionEstimator<D extends Distribution>
Distribution estimators that use the method of moments (MOM) in logspace, i.e. that only need the statistical moments of a data set after logarithms.interface
MADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.interface
MeanVarianceDistributionEstimator<D extends Distribution>
Interface for estimators that only need mean and variance.interface
MOMDistributionEstimator<D extends Distribution>
Distribution estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.Methods in elki.math.statistics.distribution.estimator that return Distribution Modifier and Type Method Description Distribution
UniformMinMaxEstimator. estimate(double min, double max)
Estimate parameters from minimum and maximum observed. -
Uses of Distribution in elki.math.statistics.distribution.estimator.meta
Classes in elki.math.statistics.distribution.estimator.meta with type parameters of type Distribution Modifier and Type Class Description class
TrimmedEstimator<D extends Distribution>
Trimmed wrapper around other estimators.static class
TrimmedEstimator.Par<D extends Distribution>
Parameterization class.class
WinsorizingEstimator<D extends Distribution>
Winsorizing or Georgization estimator.static class
WinsorizingEstimator.Par<D extends Distribution>
Parameterization class.Fields in elki.math.statistics.distribution.estimator.meta declared as Distribution Modifier and Type Field Description (package private) Distribution
BestFitEstimator.BestFit. dist
Best match.Methods in elki.math.statistics.distribution.estimator.meta that return Distribution Modifier and Type Method Description <A> Distribution
BestFitEstimator. estimate(A data, NumberArrayAdapter<?,A> adapter)
Methods in elki.math.statistics.distribution.estimator.meta that return types with arguments of type Distribution Modifier and Type Method Description java.lang.Class<? super Distribution>
BestFitEstimator. getDistributionClass()
Methods in elki.math.statistics.distribution.estimator.meta with parameters of type Distribution Modifier and Type Method Description void
BestFitEstimator.BestFit. test(DistributionEstimator<?> est, Distribution d)
Test the goodness of fit, keep the best.private static double
BestFitEstimator.BestFit. testFit(double[] x, double[] test, Distribution dist)
Test the quality of a fit. -
Uses of Distribution in elki.utilities.scaling.outlier
Fields in elki.utilities.scaling.outlier declared as Distribution Modifier and Type Field Description private Distribution
COPOutlierScaling. dist
Score distribution.
-