Uses of Interface
elki.math.statistics.distribution.Distribution
-
Packages that use Distribution Package Description elki.clustering.biclustering Biclustering algorithms.elki.data.synthetic.bymodel Generator using a distribution model specified in an XML configuration file.elki.datasource.filter.cleaning Filters for data cleaning.elki.datasource.filter.normalization.columnwise Normalizations operating on columns / variates; where each column is treated independently.elki.datasource.filter.transform Data space transformations.elki.math.statistics.distribution Standard distributions, with random generation functionalities.elki.math.statistics.distribution.estimator Estimators for statistical distributions.elki.math.statistics.distribution.estimator.meta Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g., on a trimmed data set, or as an ensemble.elki.utilities.scaling.outlier Scaling of outlier scores, that require a statistical analysis of the occurring values. -
-
Uses of Distribution in elki.clustering.biclustering
Fields in elki.clustering.biclustering declared as Distribution Modifier and Type Field Description private DistributionChengAndChurch. distDistribution to sample random replacement values from.private DistributionChengAndChurch.Par. distDistribution of replacement values.Methods in elki.clustering.biclustering with parameters of type Distribution Modifier and Type Method Description protected voidChengAndChurch.BiclusterCandidate. maskMatrix(double[][] mat, Distribution replacement, java.util.Random rnd)Updates the mask with replacement values for all data in the given rows and columns.Constructors in elki.clustering.biclustering with parameters of type Distribution Constructor Description ChengAndChurch(double delta, double alpha, int n, Distribution dist, RandomFactory rnd)Constructor. -
Uses of Distribution in elki.data.synthetic.bymodel
Fields in elki.data.synthetic.bymodel with type parameters of type Distribution Modifier and Type Field Description private java.util.List<Distribution>GeneratorSingleCluster. axesThe distribution generators for each axisMethods in elki.data.synthetic.bymodel that return Distribution Modifier and Type Method Description DistributionGeneratorSingleCluster. getDistribution(int i)Get distribution along (generator) axis i.Methods in elki.data.synthetic.bymodel with parameters of type Distribution Modifier and Type Method Description voidGeneratorSingleCluster. addGenerator(Distribution gen, java.util.Random rnd)Add a new generator to the cluster. -
Uses of Distribution in elki.datasource.filter.cleaning
Fields in elki.datasource.filter.cleaning declared as Distribution Modifier and Type Field Description private DistributionReplaceNaNWithRandomFilter. distDistribution to generate replacement values with.private DistributionReplaceNaNWithRandomFilter.Par. distDistribution to generate replacement values with.Constructors in elki.datasource.filter.cleaning with parameters of type Distribution Constructor Description ReplaceNaNWithRandomFilter(Distribution dist, RandomFactory rnd)Constructor. -
Uses of Distribution in elki.datasource.filter.normalization.columnwise
Fields in elki.datasource.filter.normalization.columnwise with type parameters of type Distribution Modifier and Type Field Description protected java.util.List<Distribution>AttributeWiseCDFNormalization. distsStores the estimated distributionsMethods in elki.datasource.filter.normalization.columnwise that return Distribution Modifier and Type Method Description protected DistributionAttributeWiseCDFNormalization. findBestFit(java.util.List<V> col, AttributeWiseCDFNormalization.Adapter adapter, int d, double[] test)Find the best fitting distribution. -
Uses of Distribution in elki.datasource.filter.transform
Fields in elki.datasource.filter.transform declared as Distribution Modifier and Type Field Description (package private) DistributionHistogramJitterFilter. distRandom generator. -
Uses of Distribution in elki.math.statistics.distribution
Classes in elki.math.statistics.distribution that implement Distribution Modifier and Type Class Description classBetaDistributionBeta Distribution with implementation of the regularized incomplete beta functionclassCauchyDistributionCauchy distribution.classChiDistributionChi distribution.classChiSquaredDistributionChi-Squared distribution (a specialization of the Gamma distribution).classConstantDistributionPseudo distribution, that has a unique constant value.classExpGammaDistributionExp-Gamma Distribution, with random generation and density functions.classExponentialDistributionExponential distribution.classExponentiallyModifiedGaussianDistributionExponentially modified Gaussian (EMG) distribution (ExGaussian distribution) is a combination of a normal distribution and an exponential distribution.classGammaDistributionGamma Distribution, with random generation and density functions.classGeneralizedExtremeValueDistributionGeneralized Extreme Value (GEV) distribution, also known as Fisher–Tippett distribution.classGeneralizedLogisticAlternateDistributionGeneralized logistic distribution.classGeneralizedLogisticDistributionGeneralized logistic distribution.classGeneralizedParetoDistributionGeneralized Pareto Distribution (GPD), popular for modeling long tail distributions.classGumbelDistributionGumbel distribution, also known as Log-Weibull distribution.classHaltonUniformDistributionHalton sequences are a pseudo-uniform distribution.classInverseGaussianDistributionInverse Gaussian distribution aka Wald distribution.classKappaDistributionKappa distribution, by Hosking.classLaplaceDistributionLaplace distribution also known as double exponential distributionclassLogGammaDistributionLog-Gamma Distribution, with random generation and density functions.classLogisticDistributionLogistic distribution.classLogLogisticDistributionLog-Logistic distribution also known as Fisk distribution.classLogNormalDistributionLog-Normal distribution.classNormalDistributionGaussian distribution aka normal distributionclassPoissonDistributionINCOMPLETE implementation of the poisson distribution.classRayleighDistributionRayleigh distribution, a special case of the Weibull distribution.classSkewGeneralizedNormalDistributionGeneralized normal distribution by adding a skew term, similar to lognormal distributions.classStudentsTDistributionStudent's t distribution.classUniformDistributionUniform distribution.classWeibullDistributionWeibull distribution. -
Uses of Distribution in elki.math.statistics.distribution.estimator
Classes in elki.math.statistics.distribution.estimator with type parameters of type Distribution Modifier and Type Interface Description interfaceDistributionEstimator<D extends Distribution>Estimate distribution parameters from a sample.interfaceLMMDistributionEstimator<D extends Distribution>Interface for distribution estimators based on the methods of L-Moments (LMM).interfaceLogMADDistributionEstimator<D extends Distribution>Distribuition estimators that use the method of moments (MOM) in logspace.interfaceLogMeanVarianceEstimator<D extends Distribution>Estimators that work on Mean and Variance only (i.e. the first two moments only).interfaceLogMOMDistributionEstimator<D extends Distribution>Distribution estimators that use the method of moments (MOM) in logspace, i.e. that only need the statistical moments of a data set after logarithms.interfaceMADDistributionEstimator<D extends Distribution>Distribuition estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.interfaceMeanVarianceDistributionEstimator<D extends Distribution>Interface for estimators that only need mean and variance.interfaceMOMDistributionEstimator<D extends Distribution>Distribution estimators that use the method of moments (MOM), i.e. that only need the statistical moments of a data set.Methods in elki.math.statistics.distribution.estimator that return Distribution Modifier and Type Method Description DistributionUniformMinMaxEstimator. estimate(double min, double max)Estimate parameters from minimum and maximum observed. -
Uses of Distribution in elki.math.statistics.distribution.estimator.meta
Classes in elki.math.statistics.distribution.estimator.meta with type parameters of type Distribution Modifier and Type Class Description classTrimmedEstimator<D extends Distribution>Trimmed wrapper around other estimators.static classTrimmedEstimator.Par<D extends Distribution>Parameterization class.classWinsorizingEstimator<D extends Distribution>Winsorizing or Georgization estimator.static classWinsorizingEstimator.Par<D extends Distribution>Parameterization class.Fields in elki.math.statistics.distribution.estimator.meta declared as Distribution Modifier and Type Field Description (package private) DistributionBestFitEstimator.BestFit. distBest match.Methods in elki.math.statistics.distribution.estimator.meta that return Distribution Modifier and Type Method Description <A> DistributionBestFitEstimator. estimate(A data, NumberArrayAdapter<?,A> adapter)Methods in elki.math.statistics.distribution.estimator.meta that return types with arguments of type Distribution Modifier and Type Method Description java.lang.Class<? super Distribution>BestFitEstimator. getDistributionClass()Methods in elki.math.statistics.distribution.estimator.meta with parameters of type Distribution Modifier and Type Method Description voidBestFitEstimator.BestFit. test(DistributionEstimator<?> est, Distribution d)Test the goodness of fit, keep the best.private static doubleBestFitEstimator.BestFit. testFit(double[] x, double[] test, Distribution dist)Test the quality of a fit. -
Uses of Distribution in elki.utilities.scaling.outlier
Fields in elki.utilities.scaling.outlier declared as Distribution Modifier and Type Field Description private DistributionCOPOutlierScaling. distScore distribution.
-