Class LPCAEstimator
- java.lang.Object
-
- elki.math.statistics.intrinsicdimensionality.LPCAEstimator
-
- All Implemented Interfaces:
IntrinsicDimensionalityEstimator<NumberVector>
public class LPCAEstimator extends java.lang.Object implements IntrinsicDimensionalityEstimator<NumberVector>
Local PCA based ID estimator.- Since:
- 0.8.0
- Author:
- Erik Thordsen
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classLPCAEstimator.ParParameterization class.
-
Field Summary
Fields Modifier and Type Field Description protected EigenPairFiltereigenFilterEigenvalue filterprotected PCARunnerpcaRunnerClass to perform PCA
-
Constructor Summary
Constructors Constructor Description LPCAEstimator(EigenPairFilter eigenFilter)Constructor.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected doubleestimate(DBIDs ids, Relation<? extends NumberVector> relation)Returns an ID estimate based on the specified filter for the given point DBID set and relation.doubleestimate(KNNSearcher<DBIDRef> knnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, int k)Estimate from a Reference Point, a KNNSearcher and the neighborhood size k.doubleestimate(RangeSearcher<DBIDRef> rnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, double range)Estimate from a distance list.
-
-
-
Field Detail
-
pcaRunner
protected PCARunner pcaRunner
Class to perform PCA
-
eigenFilter
protected EigenPairFilter eigenFilter
Eigenvalue filter
-
-
Constructor Detail
-
LPCAEstimator
public LPCAEstimator(EigenPairFilter eigenFilter)
Constructor.- Parameters:
eigenFilter- Filter to choose the number of eigenvalues to keep
-
-
Method Detail
-
estimate
public double estimate(KNNSearcher<DBIDRef> knnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, int k)
Description copied from interface:IntrinsicDimensionalityEstimatorEstimate from a Reference Point, a KNNSearcher and the neighborhood size k.- Specified by:
estimatein interfaceIntrinsicDimensionalityEstimator<NumberVector>- Parameters:
knnq- KNNSearcherdistq- Distance query for additional distancescur- reference pointk- neighborhood size- Returns:
- Estimated intrinsic dimensionality
-
estimate
public double estimate(RangeSearcher<DBIDRef> rnq, DistanceQuery<? extends NumberVector> distq, DBIDRef cur, double range)
Description copied from interface:IntrinsicDimensionalityEstimatorEstimate from a distance list.- Specified by:
estimatein interfaceIntrinsicDimensionalityEstimator<NumberVector>- Parameters:
rnq- RangeSearcherdistq- Distance query for additional distancescur- reference pointrange- neighborhood radius- Returns:
- Estimated intrinsic dimensionality
-
estimate
protected double estimate(DBIDs ids, Relation<? extends NumberVector> relation)
Returns an ID estimate based on the specified filter for the given point DBID set and relation.- Parameters:
ids- neighbor objectsrelation- data vector relation- Returns:
- estimated intrinsic dimensionality
-
-