Package elki.clustering.kmeans
Class GMeans.Par<V extends NumberVector,M extends MeanModel>
- java.lang.Object
-
- elki.clustering.kmeans.AbstractKMeans.Par<V>
-
- elki.clustering.kmeans.GMeans.Par<V,M>
-
- Type Parameters:
V- Vector typeM- Model type of inner algorithm
- All Implemented Interfaces:
Parameterizer
- Enclosing class:
- GMeans<V extends NumberVector,M extends MeanModel>
public static class GMeans.Par<V extends NumberVector,M extends MeanModel> extends AbstractKMeans.Par<V>
Parameterization class.- Author:
- Robert Gehde
-
-
Field Summary
Fields Modifier and Type Field Description protected doublecriticalCritical valuestatic OptionIDCRITICAL_IDCritical value for the Anderson-Darling-Test-
Fields inherited from class elki.clustering.kmeans.XMeans.Par
INFORMATION_CRITERION_ID, informationCriterion, INNER_KMEANS_ID, innerKMeans, k_max, k_min, K_MIN_ID, random, SEED_ID
-
Fields inherited from class elki.clustering.kmeans.AbstractKMeans.Par
distance, initializer, k, maxiter, varstat
-
-
Constructor Summary
Constructors Constructor Description Par()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected voidconfigureInformationCriterion(Parameterization config)Configure the information criterion option, to allow overriding byGMeans.GMeans<V,M>make()Make an instance after successful configuration.-
Methods inherited from class elki.clustering.kmeans.XMeans.Par
configure
-
Methods inherited from class elki.clustering.kmeans.AbstractKMeans.Par
getParameterDistance, getParameterInitialization, getParameterK, getParameterMaxIter, getParameterVarstat, needsMetric
-
-
-
-
Field Detail
-
CRITICAL_ID
public static final OptionID CRITICAL_ID
Critical value for the Anderson-Darling-Test
-
critical
protected double critical
Critical value
-
-
Method Detail
-
configureInformationCriterion
protected void configureInformationCriterion(Parameterization config)
Description copied from class:XMeans.ParConfigure the information criterion option, to allow overriding byGMeans.- Overrides:
configureInformationCriterionin classXMeans.Par<V extends NumberVector,M extends MeanModel>- Parameters:
config- Parameterization
-
make
public GMeans<V,M> make()
Description copied from interface:ParameterizerMake an instance after successful configuration.Note: your class should return the exact type, only this very broad interface should use
Objectas return type.- Specified by:
makein interfaceParameterizer- Overrides:
makein classXMeans.Par<V extends NumberVector,M extends MeanModel>- Returns:
- a new instance
-
-