Interface MeanVarianceDistributionEstimator<D extends Distribution>
-
- Type Parameters:
D- Distribution type
- All Superinterfaces:
DistributionEstimator<D>,MOMDistributionEstimator<D>
- All Known Implementing Classes:
ExponentialMOMEstimator,GammaMOMEstimator,InverseGaussianMOMEstimator,NormalMOMEstimator
public interface MeanVarianceDistributionEstimator<D extends Distribution> extends MOMDistributionEstimator<D>
Interface for estimators that only need mean and variance. These can implicitely (obviously) also handle full statistical moments.- Since:
- 0.6.0
- Author:
- Erich Schubert
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method Description default <A> Destimate(A data, NumberArrayAdapter<?,A> adapter)General form of the parameter estimationDestimateFromMeanVariance(MeanVariance mv)Estimate the distribution from mean and variance.default DestimateFromStatisticalMoments(StatisticalMoments moments)General form of the parameter estimation-
Methods inherited from interface elki.math.statistics.distribution.estimator.DistributionEstimator
estimate, getDistributionClass
-
-
-
-
Method Detail
-
estimateFromMeanVariance
D estimateFromMeanVariance(MeanVariance mv)
Estimate the distribution from mean and variance.- Parameters:
mv- Mean and variance.- Returns:
- Distribution
-
estimateFromStatisticalMoments
default D estimateFromStatisticalMoments(StatisticalMoments moments)
Description copied from interface:MOMDistributionEstimatorGeneral form of the parameter estimation- Specified by:
estimateFromStatisticalMomentsin interfaceMOMDistributionEstimator<D extends Distribution>- Parameters:
moments- Statistical moments- Returns:
- Estimated distribution
-
estimate
default <A> D estimate(A data, NumberArrayAdapter<?,A> adapter)
Description copied from interface:DistributionEstimatorGeneral form of the parameter estimation- Specified by:
estimatein interfaceDistributionEstimator<D extends Distribution>- Specified by:
estimatein interfaceMOMDistributionEstimator<D extends Distribution>- Parameters:
data- Data setadapter- Number array adapter- Returns:
- Estimated distribution
-
-