See: Description

| Class | Description |
|---|---|
| HellingerHistogramNormalization<V extends NumberVector> |
Normalize histograms by scaling them to L1 norm 1, then taking the square
root in each attribute.
|
| HellingerHistogramNormalization.Parameterizer |
Parameterization class.
|
| InstanceLogRankNormalization<V extends NumberVector> |
Normalize vectors such that the smallest value of each instance is 0, the
largest is 1, but using log_2(1+x).
|
| InstanceLogRankNormalization.Parameterizer |
Parameterization class.
|
| InstanceMeanVarianceNormalization<V extends NumberVector> |
Normalize vectors such that they have zero mean and unit variance.
|
| InstanceMeanVarianceNormalization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| InstanceMinMaxNormalization<V extends NumberVector> |
Normalize vectors such that the smallest attribute is 0, the largest is 1.
|
| InstanceMinMaxNormalization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| InstanceRankNormalization<V extends NumberVector> |
Normalize vectors such that the smallest value of each instance is 0, the
largest is 1.
|
| InstanceRankNormalization.Parameterizer |
Parameterization class.
|
| LengthNormalization<V extends NumberVector> |
Class to perform a normalization on vectors to norm 1.
|
| LengthNormalization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
| Log1PlusNormalization<V extends NumberVector> |
Normalize the data set by applying log(1+|x|*b)/log(b+1) to any value.
|
| Log1PlusNormalization.Parameterizer<V extends NumberVector> |
Parameterization class.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.