public static class DependencyDerivator.Parameterizer<V extends NumberVector> extends AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<V>
| Modifier and Type | Field and Description | 
|---|---|
static OptionID | 
DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
Flag to use random sample (use knn query around centroid, if flag is not
 set). 
 | 
protected EigenPairFilter | 
filter
Filter to select eigenvectors. 
 | 
static OptionID | 
OUTPUT_ACCURACY_ID
Parameter to specify the threshold for output accuracy fraction digits,
 must be an integer equal to or greater than 0. 
 | 
protected int | 
outputAccuracy
Output accuracy. 
 | 
protected PCARunner | 
pca
Class to compute PCA with 
 | 
protected boolean | 
randomSample
Flag to enable random sampling 
 | 
static OptionID | 
SAMPLE_SIZE_ID
Optional parameter to specify the threshold for the size of the random
 sample to use, must be an integer greater than 0. 
 | 
protected int | 
sampleSize
Sample size. 
 | 
distanceFunction| Constructor and Description | 
|---|
Parameterizer()  | 
| Modifier and Type | Method and Description | 
|---|---|
protected DependencyDerivator<V> | 
makeInstance()
Make an instance after successful configuration. 
 | 
protected void | 
makeOptions(Parameterization config)
Add all options. 
 | 
configure, makepublic static final OptionID DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
public static final OptionID OUTPUT_ACCURACY_ID
public static final OptionID SAMPLE_SIZE_ID
Default value: the size of the complete dataset
protected int outputAccuracy
protected int sampleSize
protected boolean randomSample
protected PCARunner pca
protected EigenPairFilter filter
protected void makeOptions(Parameterization config)
AbstractParameterizermakeOptions in class AbstractNumberVectorDistanceBasedAlgorithm.Parameterizer<V extends NumberVector>config - Parameterization to add options to.protected DependencyDerivator<V> makeInstance()
AbstractParameterizermakeInstance in class AbstractParameterizerCopyright © 2019 ELKI Development Team. License information.