O - the type of Object the algorithm is applied to@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, Xiaowei Xu",title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise",booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96)",url="http://www.aaai.org/Library/KDD/1996/kdd96-037.php",bibkey="DBLP:conf/kdd/EsterKSX96") @Reference(authors="Erich Schubert, J\u00f6rg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu",title="DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN",booktitle="ACM Trans. Database Systems (TODS)",url="https://doi.org/10.1145/3068335",bibkey="DBLP:journals/tods/SchubertSEKX17") @Priority(value=200) public class DBSCAN<O> extends AbstractDistanceBasedAlgorithm<O,Clustering<Model>> implements ClusteringAlgorithm<Clustering<Model>>
Reference:
 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu
 A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
 with Noise
 Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96)
 
Further discussion:
 Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu
 DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN
 ACM Trans. Database Systems (TODS)
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
DBSCAN.Parameterizer<O>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected double | 
epsilon
Holds the epsilon radius threshold. 
 | 
private static Logging | 
LOG
The logger for this class. 
 | 
protected int | 
minpts
Holds the minimum cluster size. 
 | 
protected long | 
ncounter
Number of neighbors. 
 | 
protected ModifiableDBIDs | 
noise
Holds a set of noise. 
 | 
protected ModifiableDBIDs | 
processedIDs
Holds a set of processed ids. 
 | 
protected java.util.List<ModifiableDBIDs> | 
resultList
Holds a list of clusters found. 
 | 
ALGORITHM_IDDISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
DBSCAN(DistanceFunction<? super O> distanceFunction,
      double epsilon,
      int minpts)
Constructor with parameters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
expandCluster(Relation<O> relation,
             RangeQuery<O> rangeQuery,
             DBIDRef startObjectID,
             ArrayModifiableDBIDs seeds,
             FiniteProgress objprog,
             IndefiniteProgress clusprog)
DBSCAN-function expandCluster. 
 | 
TypeInformation[] | 
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. 
 | 
protected Logging | 
getLogger()
Get the (STATIC) logger for this class. 
 | 
private void | 
processNeighbors(DoubleDBIDListIter neighbor,
                ModifiableDBIDs currentCluster,
                ArrayModifiableDBIDs seeds)
Process a single core point. 
 | 
Clustering<Model> | 
run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database. 
 | 
protected void | 
runDBSCAN(Relation<O> relation,
         RangeQuery<O> rangeQuery)
Run the DBSCAN algorithm 
 | 
getDistanceFunctionrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
protected double epsilon
protected int minpts
protected java.util.List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
protected long ncounter
public DBSCAN(DistanceFunction<? super O> distanceFunction, double epsilon, int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts parameterpublic Clustering<Model> run(Relation<O> relation)
protected void runDBSCAN(Relation<O> relation, RangeQuery<O> rangeQuery)
relation - Data relationrangeQuery - Range query classprotected void expandCluster(Relation<O> relation, RangeQuery<O> rangeQuery, DBIDRef startObjectID, ArrayModifiableDBIDs seeds, FiniteProgress objprog, IndefiniteProgress clusprog)
relation - Database relation to run onrangeQuery - Range query to usestartObjectID - potential seed of a new potential clusterseeds - Array to store the current seedsobjprog - Number of objects processed (may be null)clusprog - Number of clusters found (may be null)private void processNeighbors(DoubleDBIDListIter neighbor, ModifiableDBIDs currentCluster, ArrayModifiableDBIDs seeds)
neighbor - Iterator over neighborscurrentCluster - Current clusterseeds - Seed setpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<Model>>Copyright © 2019 ELKI Development Team. License information.