| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | 
 Expectation-Maximization clustering algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DiagonalGaussianModel
Simpler model for a single Gaussian cluster, without covariances. 
 | 
class  | 
MultivariateGaussianModel
Model for a single Gaussian cluster. 
 | 
class  | 
SphericalGaussianModel
Simple spherical Gaussian cluster. 
 | 
class  | 
TextbookMultivariateGaussianModel
Numerically problematic implementation of the GMM model, using the textbook
 algorithm. 
 | 
class  | 
TwoPassMultivariateGaussianModel
Model for a single Gaussian cluster, using two-passes for slightly better
 numerics. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
java.util.List<? extends EMClusterModel<M>> | 
EMClusterModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)
Build the initial models 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector> relation,
                              java.util.List<? extends EMClusterModel<?>> models,
                              WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
 compute the expectation value of the current mixture of distributions. 
 | 
static void | 
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector> relation,
                           WritableDataStore<double[]> probClusterIGivenX,
                           java.util.List<? extends EMClusterModel<?>> models,
                           double prior)
Recompute the covariance matrixes. 
 | 
Copyright © 2019 ELKI Development Team. License information.