| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.em | 
 Expectation-Maximization clustering algorithm. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | 
 Axis-parallel subspace clustering algorithms
 
 The clustering algorithms in this package are instances of both, projected
 clustering algorithms or subspace clustering algorithms according to the
 classical but somewhat obsolete classification schema of clustering
 algorithms for axis-parallel subspaces. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
java.util.List<MultivariateGaussianModel> | 
MultivariateGaussianModelFactory.buildInitialModels(Database database,
                  Relation<V> relation,
                  int k,
                  NumberVectorDistanceFunction<? super V> df)  | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
P3C.assignUnassigned(Relation<V> relation,
                WritableDataStore<double[]> probClusterIGivenX,
                java.util.List<MultivariateGaussianModel> models,
                ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
 distance. 
 | 
private void | 
P3C.computeFuzzyMembership(Relation<V> relation,
                      java.util.ArrayList<P3C.Signature> clusterCores,
                      ModifiableDBIDs unassigned,
                      WritableDataStore<double[]> probClusterIGivenX,
                      java.util.List<MultivariateGaussianModel> models,
                      int dim)
Computes a fuzzy membership with the weights based on which cluster cores
 each data point is part of. 
 | 
private void | 
P3C.findOutliers(Relation<V> relation,
            java.util.List<MultivariateGaussianModel> models,
            java.util.ArrayList<P3C.ClusterCandidate> clusterCandidates,
            ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
 point in a cluster against the critical value of the ChiSquared
 distribution with as many degrees of freedom as the cluster has relevant
 attributes. 
 | 
Copyright © 2019 ELKI Development Team. License information.