V - Data type@Reference(authors="Erich Schubert, Peter J. Rousseeuw", title="Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms", booktitle="preprint, to appear", url="https://arxiv.org/abs/1810.05691", bibkey="DBLP:journals/corr/abs-1810-05691") public class FastCLARA<V> extends KMedoidsFastPAM<V>
KMedoidsFastPAM
 improvements, to increase scalability in the number of clusters. This variant
 will also default to twice the sample size, to improve quality.
 TODO: use a triangular distance matrix, rather than a hash-map based cache, for a bit better performance and less memory.
Reference:
 Erich Schubert, Peter J. Rousseeuw
 Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS
 Algorithms
 preprint, to appear
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
FastCLARA.Parameterizer<V>
Parameterization class. 
 | 
KMedoidsFastPAM.Instance| Modifier and Type | Field and Description | 
|---|---|
(package private) boolean | 
keepmed
Keep the previous medoids in the sample (see page 145). 
 | 
private static Logging | 
LOG
Class logger. 
 | 
(package private) int | 
numsamples
Number of samples to draw (i.e. iterations). 
 | 
(package private) RandomFactory | 
random
Random factory for initialization. 
 | 
(package private) double | 
sampling
Sampling rate. 
 | 
fasttolinitializer, k, maxiterALGORITHM_IDDISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
FastCLARA(DistanceFunction<? super V> distanceFunction,
         int k,
         int maxiter,
         KMedoidsInitialization<V> initializer,
         double fasttol,
         int numsamples,
         double sampling,
         boolean keepmed,
         RandomFactory random)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MedoidModel> | 
run(Database database,
   Relation<V> relation)
Run k-medoids 
 | 
getLogger, rungetInputTypeRestriction, initialMedoidsgetDistanceFunctionrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
double sampling
int numsamples
boolean keepmed
RandomFactory random
public FastCLARA(DistanceFunction<? super V> distanceFunction, int k, int maxiter, KMedoidsInitialization<V> initializer, double fasttol, int numsamples, double sampling, boolean keepmed, RandomFactory random)
distanceFunction - Distance function to usek - Number of clusters to producemaxiter - Maximum number of iterationsinitializer - Initialization functionnumsamples - Number of samples (sampling iterations)sampling - Sampling rate (absolute or relative)keepmed - Keep the previous medoids in the next samplerandom - Random generatorpublic Clustering<MedoidModel> run(Database database, Relation<V> relation)
KMedoidsPAMrun in class KMedoidsPAM<V>database - Databaserelation - relation to useCopyright © 2019 ELKI Development Team. License information.