O - Object type for KMedoids@Alias(value="de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.FirstKInitialMeans") @Reference(authors="J. MacQueen", title="Some Methods for Classification and Analysis of Multivariate Observations", booktitle="5th Berkeley Symp. Math. Statist. Prob.", url="http://projecteuclid.org/euclid.bsmsp/1200512992", bibkey="conf/bsmsp/MacQueen67") public class FirstKInitialMeans<O> extends java.lang.Object implements KMeansInitialization, KMedoidsInitialization<O>
Reference:
 J. MacQueen
 Some Methods for Classification and Analysis of Multivariate Observations
 5th Berkeley Symp. Math. Statist. Prob.
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
FirstKInitialMeans.Parameterizer<V extends NumberVector>
Parameterization class. 
 | 
| Constructor and Description | 
|---|
FirstKInitialMeans()
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double[][] | 
chooseInitialMeans(Database database,
                  Relation<? extends NumberVector> relation,
                  int k,
                  NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means 
 | 
DBIDs | 
chooseInitialMedoids(int k,
                    DBIDs ids,
                    DistanceQuery<? super O> distanceFunction)
Choose initial means 
 | 
public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitializationchooseInitialMeans in interface KMeansInitializationdatabase - Database contextrelation - Relationk - Parameter kdistanceFunction - Distance functionpublic DBIDs chooseInitialMedoids(int k, DBIDs ids, DistanceQuery<? super O> distanceFunction)
KMedoidsInitializationchooseInitialMedoids in interface KMedoidsInitialization<O>k - Parameter kids - Candidate IDs.distanceFunction - Distance functionCopyright © 2019 ELKI Development Team. License information.