public class PredefinedInitialMeans extends AbstractKMeansInitialization
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
PredefinedInitialMeans.Parameterizer
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) double[][] | 
initialMeans
Initial means to return. 
 | 
rnd| Constructor and Description | 
|---|
PredefinedInitialMeans(double[][] initialMeans)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double[][] | 
chooseInitialMeans(Database database,
                  Relation<? extends NumberVector> relation,
                  int k,
                  NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means 
 | 
void | 
setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means. 
 | 
void | 
setInitialMeans(double[][] initialMeans)
Set the initial means. 
 | 
void | 
setInitialMeans(java.util.List<double[]> initialMeans)
Set the initial means. 
 | 
unboxVectorspublic PredefinedInitialMeans(double[][] initialMeans)
initialMeans - Initial meanspublic void setInitialMeans(java.util.List<double[]> initialMeans)
initialMeans - initial means.public void setInitialClusters(java.util.List<? extends Cluster<? extends MeanModel>> initialMeans)
initialMeans - initial means.public void setInitialMeans(double[][] initialMeans)
initialMeans - initial means.public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitializationdatabase - Database contextrelation - Relationk - Parameter kdistanceFunction - Distance functionCopyright © 2019 ELKI Development Team. License information.