V - Vector type@Alias(value="de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.SampleKMeansInitialization") @Reference(authors="P. S. Bradley, U. M. Fayyad", title="Refining Initial Points for K-Means Clustering", booktitle="Proc. 15th Int. Conf. on Machine Learning (ICML 1998)", bibkey="DBLP:conf/icml/BradleyF98") public class SampleKMeansInitialization<V extends NumberVector> extends AbstractKMeansInitialization
Reference:
The idea of finding centers on a sample can be found in:
 P. S. Bradley, U. M. Fayyad
 Refining Initial Points for K-Means Clustering
 Proc. 15th Int. Conf. on Machine Learning (ICML 1998)
 
But Bradley and Fayyad also suggest to repeat this multiple times. This implementation uses a single attempt only.
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
SampleKMeansInitialization.Parameterizer<V extends NumberVector>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private KMeans<V,?> | 
innerkMeans
Variant of kMeans to use for initialization. 
 | 
private double | 
rate
Sample size. 
 | 
rnd| Constructor and Description | 
|---|
SampleKMeansInitialization(RandomFactory rnd,
                          KMeans<V,?> innerkMeans,
                          double rate)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
double[][] | 
chooseInitialMeans(Database database,
                  Relation<? extends NumberVector> relation,
                  int k,
                  NumberVectorDistanceFunction<?> distanceFunction)
Choose initial means 
 | 
unboxVectorsprivate KMeans<V extends NumberVector,?> innerkMeans
private double rate
public SampleKMeansInitialization(RandomFactory rnd, KMeans<V,?> innerkMeans, double rate)
rnd - Random generator.innerkMeans - Inner k-means algorithm.rate - Sampling rate.public double[][] chooseInitialMeans(Database database, Relation<? extends NumberVector> relation, int k, NumberVectorDistanceFunction<?> distanceFunction)
KMeansInitializationdatabase - Database contextrelation - Relationk - Parameter kdistanceFunction - Distance functionCopyright © 2019 ELKI Development Team. License information.