V - the type of NumberVector handled by this Algorithm.@Title(value="FastDOC: Density-based Optimal projective Clustering") @Reference(authors="C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali", title="A Monte Carlo algorithm for fast projective clustering", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD \'02)", url="https://doi.org/10.1145/564691.564739", bibkey="DBLP:conf/sigmod/ProcopiucJAM02") public class FastDOC<V extends NumberVector> extends DOC<V>
Reference:
 C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali
 A Monte Carlo algorithm for fast projective clustering
 In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD '02).
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
FastDOC.Parameterizer<V extends NumberVector>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private int | 
d_zero
Holds the value of  
FastDOC.Parameterizer.D_ZERO_ID. | 
private static Logging | 
LOG
The logger for this class. 
 | 
alpha, beta, rnd, wALGORITHM_ID| Constructor and Description | 
|---|
FastDOC(double alpha,
       double beta,
       double w,
       int d_zero,
       RandomFactory random)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected Logging | 
getLogger()
Get the (STATIC) logger for this class. 
 | 
protected Cluster<SubspaceModel> | 
runDOC(Database database,
      Relation<V> relation,
      ArrayModifiableDBIDs S,
      int d,
      int n,
      int m,
      int r,
      int minClusterSize)
Performs a single run of FastDOC, finding a single cluster. 
 | 
computeClusterQuality, dimensionIsRelevant, findNeighbors, getInputTypeRestriction, makeCluster, runrunclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
private int d_zero
FastDOC.Parameterizer.D_ZERO_ID.public FastDOC(double alpha,
               double beta,
               double w,
               int d_zero,
               RandomFactory random)
alpha - α relative density threshold.beta - β balancing parameter for size vs. dimensionality.w - half width parameter.random - Random factoryprotected Cluster<SubspaceModel> runDOC(Database database, Relation<V> relation, ArrayModifiableDBIDs S, int d, int n, int m, int r, int minClusterSize)
runDOC in class DOC<V extends NumberVector>database - Database contextrelation - used to get actual values for DBIDs.S - The set of points we're working on.d - Dimensionality of the data set we're currently working on.r - Size of random samples.m - Number of inner iterations (per seed point).n - Number of outer iterations (seed points).minClusterSize - Minimum size a cluster must have to be accepted.null.protected Logging getLogger()
AbstractAlgorithmgetLogger in class DOC<V extends NumberVector>Copyright © 2019 ELKI Development Team. License information.