@Title(value="FDBSCAN: Density-based Clustering of Applications with Noise on fuzzy objects") @Description(value="Algorithm to find density-connected sets in a database consisting of uncertain/fuzzy objects based on the parameters \'minpts\', \'epsilon\', \'samplesize\', and (if used) \'threshold\'") @Reference(authors="Hans-Peter Kriegel, Martin Pfeifle", title="Density-based clustering of uncertain data", booktitle="Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)", url="https://doi.org/10.1145/1081870.1081955", bibkey="DBLP:conf/kdd/KriegelP05") public class FDBSCAN extends GeneralizedDBSCAN
 This implementation is based on GeneralizedDBSCAN. All implementation of
 FDBSCAN functionality is located in the neighbor predicate
 FDBSCANNeighborPredicate.
 
Reference:
 Hans-Peter Kriegel, Martin Pfeifle
 Density-based clustering of uncertain data
 Proc. 11th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD)
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
FDBSCAN.Parameterizer
Parameterizer class. 
 | 
GeneralizedDBSCAN.Instance<T>coremodel, corepred, npredALGORITHM_ID| Constructor and Description | 
|---|
FDBSCAN(double epsilon,
       int sampleSize,
       double threshold,
       RandomFactory seed,
       int minpts)
Constructor that initialized GeneralizedDBSCAN. 
 | 
getInputTypeRestriction, getLogger, runpublic FDBSCAN(double epsilon,
               int sampleSize,
               double threshold,
               RandomFactory seed,
               int minpts)
epsilon - Epsilon radiussampleSize - Sample sizethreshold - Thresholdseed - Random generatorminpts - MinPtsCopyright © 2019 ELKI Development Team. License information.