O - Object type@Title(value="Intrinsic t-Stochastic Neighbor Embedding") @Reference(authors="Erich Schubert, Michael Gertz", title="Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection: A Remedy Against the Curse of Dimensionality?", booktitle="Proc. Int. Conf. Similarity Search and Applications, SISAP 2017", url="https://doi.org/10.1007/978-3-319-68474-1_13", bibkey="DBLP:conf/sisap/SchubertG17") public class IntrinsicNearestNeighborAffinityMatrixBuilder<O> extends NearestNeighborAffinityMatrixBuilder<O>
Furthermore, this approach uses a different rule to combine affinities: rather than taking the arithmetic average of \(p_{ij}\) and \(p_{ji}\), we use \(\sqrt{p_{ij} \cdot p_{ji}}\), which prevents outliers from attaching closely to nearby clusters.
Reference:
 Erich Schubert, Michael Gertz
 Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier
 Detection: A Remedy Against the Curse of Dimensionality?
 Proc. Int. Conf. Similarity Search and Applications, SISAP 2017
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
IntrinsicNearestNeighborAffinityMatrixBuilder.Parameterizer<O>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) IntrinsicDimensionalityEstimator | 
estimator
Estimator of intrinsic dimensionality. 
 | 
private static Logging | 
LOG
Class logger. 
 | 
numberOfNeighboursdistanceFunction, MIN_PIJ, perplexity, PERPLEXITY_ERROR, PERPLEXITY_MAXITERsigma| Constructor and Description | 
|---|
IntrinsicNearestNeighborAffinityMatrixBuilder(DistanceFunction<? super O> distanceFunction,
                                             double perplexity,
                                             IntrinsicDimensionalityEstimator estimator)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends O> | 
computeAffinityMatrix(Relation<T> relation,
                     double initialScale)
Compute the affinity matrix. 
 | 
protected void | 
computePij(DBIDRange ids,
          KNNQuery<?> knnq,
          boolean square,
          int numberOfNeighbours,
          double[][] pij,
          int[][] indices,
          double initialScale)
Compute the sparse pij using the nearest neighbors only. 
 | 
protected void | 
convertNeighbors(DBIDRange ids,
                DBIDRef ix,
                boolean square,
                KNNList neighbours,
                DoubleArray dist,
                IntegerArray ind,
                Mean m)
Load a neighbor query result into a double and and integer array, also
 removing the query point. 
 | 
computeH, computeSigma, containsIndex, convertNeighborscomputePi, computePij, estimateInitialBeta, getInputTypeRestrictionbuildDistanceMatrix, computeHprivate static final Logging LOG
IntrinsicDimensionalityEstimator estimator
public IntrinsicNearestNeighborAffinityMatrixBuilder(DistanceFunction<? super O> distanceFunction, double perplexity, IntrinsicDimensionalityEstimator estimator)
distanceFunction - Distance functionperplexity - Perplexityestimator - Estimator of intrinsic dimensionalitypublic <T extends O> AffinityMatrix computeAffinityMatrix(Relation<T> relation, double initialScale)
AffinityMatrixBuildercomputeAffinityMatrix in interface AffinityMatrixBuilder<O>computeAffinityMatrix in class NearestNeighborAffinityMatrixBuilder<O>T - Relation typerelation - Data relationinitialScale - initial scaleprotected void computePij(DBIDRange ids, KNNQuery<?> knnq, boolean square, int numberOfNeighbours, double[][] pij, int[][] indices, double initialScale)
computePij in class NearestNeighborAffinityMatrixBuilder<O>ids - ID rangeknnq - kNN querysquare - Use squared distancesnumberOfNeighbours - Number of neighbors to getpij - Output of distancesindices - Output of indexesinitialScale - Initial scaling factorprotected void convertNeighbors(DBIDRange ids, DBIDRef ix, boolean square, KNNList neighbours, DoubleArray dist, IntegerArray ind, Mean m)
ids - Indexesix - Current Objectsquare - Use squared distancesneighbours - Neighbor listdist - Output distance arrayind - Output index arraym - Mean id, for statistics.Copyright © 2019 ELKI Development Team. License information.