| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.itemsetmining | 
 Algorithms for frequent itemset mining such as APRIORI. 
 | 
| de.lmu.ifi.dbs.elki.data | 
 Basic classes for different data types, database object types and label types 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected java.util.List<OneItemset> | 
APRIORI.buildFrequentOneItemsets(Relation<? extends SparseFeatureVector<?>> relation,
                        int dim,
                        int needed)
Build the 1-itemsets. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
SparseNumberVector
Combines the SparseFeatureVector and NumberVector. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BitVector
Vector using a dense bit set encoding, based on  
long[] storage. | 
class  | 
SparseByteVector
Sparse vector type, using  
byte[] for storing the values, and
 int[] for storing the indexes, approximately 5 bytes per non-zero
 value (limited to -128..+127). | 
class  | 
SparseDoubleVector
Sparse vector type, using  
double[] for storing the values, and
 int[] for storing the indexes, approximately 12 bytes per non-zero
 value. | 
class  | 
SparseFloatVector
Sparse vector type, using  
float[] for storing the values, and
 int[] for storing the indexes, approximately 8 bytes per non-zero
 value. | 
class  | 
SparseIntegerVector
Sparse vector type, using  
int[] for storing the values, and
 int[] for storing the indexes, approximately 8 bytes per non-zero
 integer value. | 
class  | 
SparseShortVector
Sparse vector type, using  
short[] for storing the values, and
 int[] for storing the indexes, approximately 6 bytes per non-zero
 value. | 
Copyright © 2019 ELKI Development Team. License information.