| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations 
 | 
| de.lmu.ifi.dbs.elki.algorithm.itemsetmining | 
 Algorithms for frequent itemset mining such as APRIORI. 
 | 
| de.lmu.ifi.dbs.elki.data | 
 Basic classes for different data types, database object types and label types 
 | 
| de.lmu.ifi.dbs.elki.data.projection.random | 
 Random projection families 
 | 
| de.lmu.ifi.dbs.elki.data.type | 
 Data type information, also used for type restrictions 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise | 
 Normalizations operating on columns / variates; where each column is treated independently. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.typeconversions | 
 Filters to perform data type conversions. 
 | 
| de.lmu.ifi.dbs.elki.datasource.parser | 
 Parsers for different file formats and data types
 
 The general use-case for any parser is to create objects out of an
  
InputStream (e.g. by reading a data file). | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski | 
 Minkowski space Lp norms such as the popular Euclidean and
 Manhattan distances. 
 | 
| de.lmu.ifi.dbs.elki.index.invertedlist | 
 Indexes using inverted lists. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private static double[][] | 
AbstractKMeans.sparseMeans(java.util.List<? extends DBIDs> clusters,
           double[][] means,
           Relation<? extends SparseNumberVector> relation)
Returns the mean vectors of the given clusters in the given database. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
boolean | 
Itemset.containedIn(SparseNumberVector bv)
Test whether the itemset is contained in a bit vector. 
 | 
boolean | 
OneItemset.containedIn(SparseNumberVector bv)  | 
boolean | 
DenseItemset.containedIn(SparseNumberVector bv)  | 
boolean | 
SmallDenseItemset.containedIn(SparseNumberVector bv)  | 
| Modifier and Type | Interface and Description | 
|---|---|
static interface  | 
SparseNumberVector.Factory<V extends SparseNumberVector>
Factory for sparse number vectors: make from a dim-value map. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BitVector
Vector using a dense bit set encoding, based on  
long[] storage. | 
class  | 
SparseByteVector
Sparse vector type, using  
byte[] for storing the values, and
 int[] for storing the indexes, approximately 5 bytes per non-zero
 value (limited to -128..+127). | 
class  | 
SparseDoubleVector
Sparse vector type, using  
double[] for storing the values, and
 int[] for storing the indexes, approximately 12 bytes per non-zero
 value. | 
class  | 
SparseFloatVector
Sparse vector type, using  
float[] for storing the values, and
 int[] for storing the indexes, approximately 8 bytes per non-zero
 value. | 
class  | 
SparseIntegerVector
Sparse vector type, using  
int[] for storing the values, and
 int[] for storing the indexes, approximately 8 bytes per non-zero
 integer value. | 
class  | 
SparseShortVector
Sparse vector type, using  
short[] for storing the values, and
 int[] for storing the indexes, approximately 6 bytes per non-zero
 value. | 
| Modifier and Type | Field and Description | 
|---|---|
static VectorFieldTypeInformation<SparseNumberVector> | 
SparseNumberVector.FIELD
Input data type: Sparse vector field. 
 | 
static VectorTypeInformation<SparseNumberVector> | 
SparseNumberVector.VARIABLE_LENGTH
Input data type: Sparse vectors with variable length. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
VectorUtil.angleSparse(SparseNumberVector v1,
           SparseNumberVector v2)
Compute the angle for sparse vectors. 
 | 
static double | 
VectorUtil.angleSparseDense(SparseNumberVector v1,
                NumberVector v2)
Compute the angle for a sparse and a dense vector. 
 | 
static double | 
VectorUtil.dotSparse(SparseNumberVector v1,
         SparseNumberVector v2)
Compute the dot product for two sparse vectors. 
 | 
static double | 
VectorUtil.dotSparseDense(SparseNumberVector v1,
              NumberVector v2)
Compute the dot product for a sparse and a dense vector. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double[] | 
AbstractRandomProjectionFamily.MatrixProjection.projectSparse(SparseNumberVector in,
             double[] ret)
Project, exploiting sparsity; but the transposed matrix layout would have
 been better. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
static VectorFieldTypeInformation<SparseNumberVector> | 
TypeUtil.SPARSE_VECTOR_FIELD
Sparse vector field. 
 | 
static VectorTypeInformation<SparseNumberVector> | 
TypeUtil.SPARSE_VECTOR_VARIABLE_LENGTH
Sparse float vector field. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InverseDocumentFrequencyNormalization<V extends SparseNumberVector>
Normalization for text frequency (TF) vectors, using the inverse document
 frequency (IDF). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SparseVectorFieldFilter<V extends SparseNumberVector>
Class that turns sparse float vectors into a proper vector field, by setting
 the maximum dimensionality for each vector. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LibSVMFormatParser<V extends SparseNumberVector>
Parser to read libSVM format files. 
 | 
static class  | 
LibSVMFormatParser.Parameterizer<V extends SparseNumberVector>
Parameterization class. 
 | 
class  | 
SparseNumberVectorLabelParser<V extends SparseNumberVector>
Parser for parsing one point per line, attributes separated by whitespace. 
 | 
static class  | 
SparseNumberVectorLabelParser.Parameterizer<V extends SparseNumberVector>
Parameterization class. 
 | 
class  | 
TermFrequencyParser<V extends SparseNumberVector>
A parser to load term frequency data, which essentially are sparse vectors
 with text keys. 
 | 
static class  | 
TermFrequencyParser.Parameterizer<V extends SparseNumberVector>
Parameterization class. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimpleTypeInformation<? super SparseNumberVector> | 
SparseSquaredEuclideanDistanceFunction.getInputTypeRestriction()  | 
SimpleTypeInformation<? super SparseNumberVector> | 
SparseLPNormDistanceFunction.getInputTypeRestriction()  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
SparseSquaredEuclideanDistanceFunction.distance(SparseNumberVector v1,
        SparseNumberVector v2)  | 
double | 
SparseManhattanDistanceFunction.distance(SparseNumberVector v1,
        SparseNumberVector v2)  | 
double | 
SparseMaximumDistanceFunction.distance(SparseNumberVector v1,
        SparseNumberVector v2)  | 
double | 
SparseEuclideanDistanceFunction.distance(SparseNumberVector v1,
        SparseNumberVector v2)  | 
double | 
SparseLPNormDistanceFunction.distance(SparseNumberVector v1,
        SparseNumberVector v2)  | 
double | 
SparseSquaredEuclideanDistanceFunction.norm(SparseNumberVector v1)  | 
double | 
SparseManhattanDistanceFunction.norm(SparseNumberVector v1)  | 
double | 
SparseMaximumDistanceFunction.norm(SparseNumberVector v1)  | 
double | 
SparseEuclideanDistanceFunction.norm(SparseNumberVector v1)  | 
double | 
SparseLPNormDistanceFunction.norm(SparseNumberVector v1)  | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
InMemoryInvertedIndex.indexSparse(DBIDRef ref,
           SparseNumberVector obj)
Index a single (sparse) instance. 
 | 
private double | 
InMemoryInvertedIndex.naiveQuerySparse(SparseNumberVector obj,
                WritableDoubleDataStore scores,
                HashSetModifiableDBIDs cands)
Query the most similar objects, sparse version. 
 | 
Copyright © 2019 ELKI Development Team. License information.