| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask
 main routine. | 
| de.lmu.ifi.dbs.elki.database.ids | 
 Database object identification and ID group handling API. 
 | 
| de.lmu.ifi.dbs.elki.database.ids.integer | 
 Integer-based DBID implementation --
 do not use directly - always use  
DBIDUtil. | 
| de.lmu.ifi.dbs.elki.database.query.knn | 
 Prepared queries for k nearest neighbor (kNN) queries 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
| de.lmu.ifi.dbs.elki.index.tree.spatial.kd | 
 K-d-tree and variants 
 | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | 
 Queries on the R-Tree family of indexes: kNN and range queries 
 | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | 
| Modifier and Type | Method and Description | 
|---|---|
private java.util.List<KNNHeap> | 
KNNJoin.initHeaps(SpatialPrimitiveDistanceFunction<V> distFunction,
         N pr)
Initialize the heaps. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
KNNJoin.computeStopDistance(java.util.List<KNNHeap> heaps)
Compute the maximum stop distance. 
 | 
private void | 
KNNJoin.processDataPages(SpatialPrimitiveDistanceFunction<? super V> df,
                java.util.List<KNNHeap> pr_heaps,
                java.util.List<KNNHeap> ps_heaps,
                N pr,
                N ps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
private void | 
KNNJoin.processDataPages(SpatialPrimitiveDistanceFunction<? super V> df,
                java.util.List<KNNHeap> pr_heaps,
                java.util.List<KNNHeap> ps_heaps,
                N pr,
                N ps)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
KNNHeap | 
DBIDFactory.newHeap(int k)
Create an heap for kNN search. 
 | 
static KNNHeap | 
DBIDUtil.newHeap(int k)
Create an appropriate heap for the distance type. 
 | 
KNNHeap | 
DBIDFactory.newHeap(KNNList exist)
Build a new heap from a given list. 
 | 
static KNNHeap | 
DBIDUtil.newHeap(KNNList exist)
Build a new heap from a given list. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
DoubleIntegerDBIDKNNHeap
Class to efficiently manage a kNN heap. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
KNNHeap | 
AbstractIntegerDBIDFactory.newHeap(int k)  | 
KNNHeap | 
AbstractIntegerDBIDFactory.newHeap(KNNList exist)  | 
| Modifier and Type | Method and Description | 
|---|---|
private KNNHeap | 
LinearScanPrimitiveDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
private KNNHeap | 
LinearScanEuclideanDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private KNNHeap | 
LinearScanPrimitiveDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
private KNNHeap | 
LinearScanEuclideanDistanceKNNQuery.linearScan(Relation<? extends O> relation,
          DBIDIter iter,
          O obj,
          KNNHeap heap)
Main loop of the linear scan. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
LinearScanDistanceKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
                  java.util.List<KNNHeap> heaps)
Linear batch knn for arbitrary distance functions. 
 | 
protected void | 
LinearScanPrimitiveDistanceKNNQuery.linearScanBatchKNN(java.util.List<O> objs,
                  java.util.List<KNNHeap> heaps)
Perform a linear scan batch kNN for primitive distance functions. 
 | 
protected void | 
LinearScanEuclideanDistanceKNNQuery.linearScanBatchKNN(java.util.List<O> objs,
                  java.util.List<KNNHeap> heaps)
Perform a linear scan batch kNN for primitive distance functions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private WritableDataStore<KNNHeap> | 
NNDescent.store
store for neighbors 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
MkMaxTree.preInsert(MkMaxEntry q,
         MkMaxEntry nodeEntry,
         KNNHeap knns_q)
Adapts the knn distances before insertion of entry q. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
MinimalisticMemoryKDTree.KDTreeKNNQuery.kdKNNSearch(int left,
           int right,
           int axis,
           O query,
           KNNHeap knns,
           DBIDArrayIter iter,
           double maxdist)
Perform a kNN search on the kd-tree. 
 | 
private double | 
SmallMemoryKDTree.KDTreeKNNQuery.kdKNNSearch(int left,
           int right,
           int axis,
           O query,
           KNNHeap knns,
           DoubleDBIDListIter iter,
           double maxdist)
Perform a kNN search on the kd-tree. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
RStarTreeKNNQuery.expandNode(O object,
          KNNHeap knnList,
          DoubleIntegerMinHeap pq,
          double maxDist,
          int nodeID)  | 
private double | 
EuclideanRStarTreeKNNQuery.expandNode(O object,
          KNNHeap knnList,
          DoubleIntegerMinHeap pq,
          double maxDist,
          int nodeID)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
RStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
       java.util.Map<DBID,KNNHeap> knnLists)
Performs a batch knn query. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
RdKNNTree.preInsert(RdKNNEntry q,
         RdKNNEntry nodeEntry,
         KNNHeap knns_q)
Adapts the knn distances before insertion of entry q. 
 | 
Copyright © 2019 ELKI Development Team. License information.