| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.instancewise | 
 Instancewise normalization, where each instance is normalized independently. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | 
 Distance functions for use within ELKI. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | 
 Distance functions using correlations 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski | 
 Minkowski space Lp norms such as the popular Euclidean and
 Manhattan distances. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | 
 Distance functions based on subspaces 
 | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.kd | 
 K-d-tree and variants 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Norm<? super V> | 
LengthNormalization.norm
Norm to use. 
 | 
(package private) Norm<? super V> | 
LengthNormalization.Parameterizer.norm
Norm to use. 
 | 
| Constructor and Description | 
|---|
LengthNormalization(Norm<? super V> norm)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MahalanobisDistanceFunction
Mahalanobis quadratic form distance for feature vectors. 
 | 
class  | 
MatrixWeightedQuadraticDistanceFunction
Matrix weighted quadratic distance, the squared form of
  
MahalanobisDistanceFunction. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
 color similarity. 
 | 
class  | 
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
 color similarity. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EuclideanDistanceFunction
Euclidean distance for  
NumberVectors. | 
class  | 
LPIntegerNormDistanceFunction
Lp-Norm for  
NumberVectors, optimized version for integer
 values of p. | 
class  | 
LPNormDistanceFunction
Lp-Norm (Minkowski norms) are a family of distances for
  
NumberVectors. | 
class  | 
ManhattanDistanceFunction
Manhattan distance for  
NumberVectors. | 
class  | 
MaximumDistanceFunction
Maximum distance for  
NumberVectors. | 
class  | 
MinimumDistanceFunction
Minimum distance for  
NumberVectors. | 
class  | 
SparseEuclideanDistanceFunction
Euclidean distance function, optimized for  
SparseNumberVectors. | 
class  | 
SparseLPNormDistanceFunction
Lp-Norm, optimized for  
SparseNumberVectors. | 
class  | 
SparseManhattanDistanceFunction
Manhattan distance, optimized for  
SparseNumberVectors. | 
class  | 
SparseMaximumDistanceFunction
Maximum distance, optimized for  
SparseNumberVectors. | 
class  | 
SparseSquaredEuclideanDistanceFunction
Squared Euclidean distance function, optimized for
  
SparseNumberVectors. | 
class  | 
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for  
SparseNumberVectors. | 
class  | 
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for  
NumberVectors. | 
class  | 
WeightedLPNormDistanceFunction
Weighted version of the Minkowski Lp norm distance for
  
NumberVector. | 
class  | 
WeightedManhattanDistanceFunction
Weighted version of the Manhattan (L1) metric. 
 | 
class  | 
WeightedMaximumDistanceFunction
Weighted version of the maximum distance function for
  
NumberVectors. | 
class  | 
WeightedSquaredEuclideanDistanceFunction
Weighted squared Euclidean distance for  
NumberVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
 absolute difference of their values in a specified dimension only. 
 | 
class  | 
SubspaceEuclideanDistanceFunction
Euclidean distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceLPNormDistanceFunction
Lp-Norm distance function between  
NumberVectors only in
 specified dimensions. | 
class  | 
SubspaceManhattanDistanceFunction
Manhattan distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceMaximumDistanceFunction
Maximum distance function between  
NumberVectors only in specified
 dimensions. | 
| Modifier and Type | Field and Description | 
|---|---|
private Norm<? super O> | 
MinimalisticMemoryKDTree.KDTreeKNNQuery.norm
Norm to use. 
 | 
private Norm<? super O> | 
MinimalisticMemoryKDTree.KDTreeRangeQuery.norm
Norm to use. 
 | 
private Norm<? super O> | 
SmallMemoryKDTree.KDTreeKNNQuery.norm
Norm to use. 
 | 
private Norm<? super O> | 
SmallMemoryKDTree.KDTreeRangeQuery.norm
Norm to use. 
 | 
| Constructor and Description | 
|---|
KDTreeKNNQuery(DistanceQuery<O> distanceQuery,
              Norm<? super O> norm)
Constructor. 
 | 
KDTreeKNNQuery(DistanceQuery<O> distanceQuery,
              Norm<? super O> norm)
Constructor. 
 | 
KDTreeRangeQuery(DistanceQuery<O> distanceQuery,
                Norm<? super O> norm)
Constructor. 
 | 
KDTreeRangeQuery(DistanceQuery<O> distanceQuery,
                Norm<? super O> norm)
Constructor. 
 | 
Copyright © 2019 ELKI Development Team. License information.