| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask
 main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | 
 Hierarchical agglomerative clustering (HAC). 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods
 
 Methods that detect outliers in subspaces (projections) of the data set. 
 | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | 
 Greedy ensembles for outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.database.query.distance | 
 Prepared queries for distances 
 | 
| de.lmu.ifi.dbs.elki.database.query.knn | 
 Prepared queries for k nearest neighbor (kNN) queries 
 | 
| de.lmu.ifi.dbs.elki.database.query.range | 
 Prepared queries for ε-range queries, that return all objects within
 the radius ε 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.transform | 
 Data space transformations 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | 
 Distance functions for use within ELKI. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | 
 Distance functions using correlations 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | 
 Distance functions using correlations 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.geo | 
 Geographic (earth) distance functions 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.histogram | 
 Distance functions for one-dimensional histograms. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski | 
 Minkowski space Lp norms such as the popular Euclidean and
 Manhattan distances. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic | 
 Distance from probability theory, mostly divergences such as K-L-divergence,
 J-divergence, F-divergence, χ²-divergence, etc. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.set | 
 Distance functions for binary and set type data. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.strings | 
 Distance functions for strings 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.subspace | 
 Distance functions based on subspaces 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries | 
 Distance functions designed for time series
 
 Note that some regular distance functions (e.g., Euclidean) are also used on
 time series. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster | 
 Similarity measures for comparing clusters. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering.internal | 
 Internal evaluation measures for clusterings. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing 
 | 
| tutorial.distancefunction | 
 Classes from the tutorial on implementing distance functions 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<? super O> | 
AbstractPrimitiveDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by
  
DistanceBasedAlgorithm.DISTANCE_FUNCTION_ID. | 
protected PrimitiveDistanceFunction<O> | 
AbstractPrimitiveDistanceBasedAlgorithm.Parameterizer.distanceFunction
Distance function to use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PrimitiveDistanceFunction<? super O> | 
AbstractPrimitiveDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction. 
 | 
| Constructor and Description | 
|---|
AbstractPrimitiveDistanceBasedAlgorithm(PrimitiveDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
SLINK.step2primitive(DBIDRef id,
              DBIDArrayIter it,
              int n,
              Relation<? extends O> relation,
              PrimitiveDistanceFunction<? super O> distFunc,
              WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the
 pointer representation to the new object with the specified id. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<O> | 
AbstractDistanceBasedSpatialOutlier.Parameterizer.distanceFunction
The distance function to use on the non-spatial attributes. 
 | 
| Constructor and Description | 
|---|
SLOM(NeighborSetPredicate.Factory<N> npred,
    PrimitiveDistanceFunction<O> nonSpatialDistanceFunction)
Constructor. 
 | 
SOF(NeighborSetPredicate.Factory<N> npred,
   PrimitiveDistanceFunction<O> nonSpatialDistanceFunction)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private DoubleDBIDList | 
OUTRES.initialRange(DBIDRef obj,
            DBIDs cands,
            PrimitiveDistanceFunction<? super NumberVector> df,
            double eps,
            OUTRES.KernelDensityEstimator kernel,
            ModifiableDoubleDBIDList n)
Initial range query. 
 | 
private DoubleDBIDList | 
OUTRES.subsetNeighborhoodQuery(DoubleDBIDList neighc,
                       DBIDRef dbid,
                       PrimitiveDistanceFunction<? super NumberVector> df,
                       double adjustedEps,
                       OUTRES.KernelDensityEstimator kernel,
                       ModifiableDoubleDBIDList n)
Refine neighbors within a subset. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private PrimitiveDistanceFunction<NumberVector> | 
GreedyEnsembleExperiment.getDistanceFunction(double[] estimated_weights)  | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<? super O> | 
PrimitiveDistanceQuery.distanceFunction
The distance function we use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PrimitiveDistanceFunction<? super O> | 
PrimitiveDistanceQuery.getDistanceFunction()  | 
| Constructor and Description | 
|---|
PrimitiveDistanceQuery(Relation<? extends O> relation,
                      PrimitiveDistanceFunction<? super O> distanceFunction)
Constructor. 
 | 
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
                                PrimitiveDistanceFunction<? super O> distanceFunction,
                                PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveDistanceFunction<? super O> | 
LinearScanPrimitiveDistanceKNNQuery.rawdist
Unboxed distance function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveDistanceFunction<? super O> | 
LinearScanPrimitiveDistanceRangeQuery.rawdist
Unboxed distance function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) PrimitiveDistanceFunction<? super I> | 
FastMultidimensionalScalingTransform.dist
Distance function to use. 
 | 
(package private) PrimitiveDistanceFunction<? super I> | 
FastMultidimensionalScalingTransform.Parameterizer.dist
Distance function to use. 
 | 
(package private) PrimitiveDistanceFunction<? super I> | 
ClassicMultidimensionalScalingTransform.dist
Distance function to use. 
 | 
(package private) PrimitiveDistanceFunction<? super I> | 
ClassicMultidimensionalScalingTransform.Parameterizer.dist
Distance function to use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected static <I> double[][] | 
ClassicMultidimensionalScalingTransform.computeSquaredDistanceMatrix(java.util.List<I> col,
                            PrimitiveDistanceFunction<? super I> dist)
Compute the squared distance matrix. 
 | 
| Constructor and Description | 
|---|
ClassicMultidimensionalScalingTransform(int tdim,
                                       PrimitiveDistanceFunction<? super I> dist,
                                       NumberVector.Factory<O> factory)
Constructor. 
 | 
FastMultidimensionalScalingTransform(int tdim,
                                    PrimitiveDistanceFunction<? super I> dist,
                                    NumberVector.Factory<O> factory,
                                    RandomFactory random)
Constructor. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
Norm<O>
Abstract interface for a mathematical norm. 
 | 
interface  | 
NumberVectorDistanceFunction<O>
Base interface for the common case of distance functions defined on numerical
 vectors. 
 | 
interface  | 
SpatialPrimitiveDistanceFunction<V extends SpatialComparable>
API for a spatial primitive distance function. 
 | 
interface  | 
WeightedNumberVectorDistanceFunction<V>
Distance functions where each dimension is assigned a weight. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractNumberVectorDistanceFunction
Abstract base class for the most common family of distance functions: defined
 on number vectors and returning double values. 
 | 
class  | 
ArcCosineDistanceFunction
Arcus cosine distance function for feature vectors. 
 | 
class  | 
ArcCosineUnitlengthDistanceFunction
Arcus cosine distance function for feature vectors. 
 | 
class  | 
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
 vector spaces (not only binary data). 
 | 
class  | 
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance. 
 | 
class  | 
ClarkDistanceFunction
Clark distance function for vector spaces. 
 | 
class  | 
CosineDistanceFunction
Cosine distance function for feature vectors. 
 | 
class  | 
CosineUnitlengthDistanceFunction
Cosine distance function for unit length feature vectors. 
 | 
class  | 
MahalanobisDistanceFunction
Mahalanobis quadratic form distance for feature vectors. 
 | 
class  | 
MatrixWeightedQuadraticDistanceFunction
Matrix weighted quadratic distance, the squared form of
  
MahalanobisDistanceFunction. | 
class  | 
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. 
 | 
class  | 
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
 color similarity. 
 | 
class  | 
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
 color similarity. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbsolutePearsonCorrelationDistanceFunction
Absolute Pearson correlation distance function for feature vectors. 
 | 
class  | 
AbsoluteUncenteredCorrelationDistanceFunction
Absolute uncentered correlation distance function for feature vectors. 
 | 
class  | 
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. 
 | 
class  | 
SquaredUncenteredCorrelationDistanceFunction
Squared uncentered correlation distance function for feature vectors. 
 | 
class  | 
UncenteredCorrelationDistanceFunction
Uncentered correlation distance. 
 | 
class  | 
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
WeightedSquaredPearsonCorrelationDistanceFunction
Weighted squared Pearson correlation distance function for feature vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e., Manhattan distance on
 the cumulative density function. 
 | 
class  | 
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EuclideanDistanceFunction
Euclidean distance for  
NumberVectors. | 
class  | 
LPIntegerNormDistanceFunction
Lp-Norm for  
NumberVectors, optimized version for integer
 values of p. | 
class  | 
LPNormDistanceFunction
Lp-Norm (Minkowski norms) are a family of distances for
  
NumberVectors. | 
class  | 
ManhattanDistanceFunction
Manhattan distance for  
NumberVectors. | 
class  | 
MaximumDistanceFunction
Maximum distance for  
NumberVectors. | 
class  | 
MinimumDistanceFunction
Minimum distance for  
NumberVectors. | 
class  | 
SparseEuclideanDistanceFunction
Euclidean distance function, optimized for  
SparseNumberVectors. | 
class  | 
SparseLPNormDistanceFunction
Lp-Norm, optimized for  
SparseNumberVectors. | 
class  | 
SparseManhattanDistanceFunction
Manhattan distance, optimized for  
SparseNumberVectors. | 
class  | 
SparseMaximumDistanceFunction
Maximum distance, optimized for  
SparseNumberVectors. | 
class  | 
SparseSquaredEuclideanDistanceFunction
Squared Euclidean distance function, optimized for
  
SparseNumberVectors. | 
class  | 
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for  
SparseNumberVectors. | 
class  | 
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for  
NumberVectors. | 
class  | 
WeightedLPNormDistanceFunction
Weighted version of the Minkowski Lp norm distance for
  
NumberVector. | 
class  | 
WeightedManhattanDistanceFunction
Weighted version of the Manhattan (L1) metric. 
 | 
class  | 
WeightedMaximumDistanceFunction
Weighted version of the maximum distance function for
  
NumberVectors. | 
class  | 
WeightedSquaredEuclideanDistanceFunction
Weighted squared Euclidean distance for  
NumberVectors. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ChiDistanceFunction
χ distance function, symmetric version. 
 | 
class  | 
ChiSquaredDistanceFunction
χ² distance function, symmetric version. 
 | 
class  | 
FisherRaoDistanceFunction
Fisher-Rao riemannian metric for (discrete) probability distributions. 
 | 
class  | 
HellingerDistanceFunction
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity
 similarity, Matusita distance, Hellinger-Kakutani metric on a probability
 distribution. 
 | 
class  | 
JeffreyDivergenceDistanceFunction
Jeffrey Divergence for  
NumberVectors is a symmetric, smoothened
 version of the KullbackLeiblerDivergenceAsymmetricDistanceFunction. | 
class  | 
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence for  
NumberVectors is a symmetric,
 smoothened version of the
 KullbackLeiblerDivergenceAsymmetricDistanceFunction. | 
class  | 
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler divergence, also known as relative entropy,
 information deviation, or just KL-distance (albeit asymmetric). 
 | 
class  | 
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler divergence, also known as relative entropy, information
 deviation or just KL-distance (albeit asymmetric). 
 | 
class  | 
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is a metric. 
 | 
class  | 
TriangularDiscriminationDistanceFunction
Triangular Discrimination has relatively tight upper and lower bounds to the
 Jensen-Shannon divergence, but is much less expensive. 
 | 
class  | 
TriangularDistanceFunction
Triangular Distance has relatively tight upper and lower bounds to the
 (square root of the) Jensen-Shannon divergence, but is much less expensive. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractSetDistanceFunction<O>
Abstract base class for set distance functions. 
 | 
class  | 
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
 many places they differ. 
 | 
class  | 
JaccardSimilarityDistanceFunction
A flexible extension of Jaccard similarity to non-binary vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LevenshteinDistanceFunction
Classic Levenshtein distance on strings. 
 | 
class  | 
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDimensionsSelectingDistanceFunction<V extends FeatureVector<?>>
Abstract base class for distances computed only in subspaces. 
 | 
class  | 
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
 absolute difference of their values in a specified dimension only. 
 | 
class  | 
SubspaceEuclideanDistanceFunction
Euclidean distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceLPNormDistanceFunction
Lp-Norm distance function between  
NumberVectors only in
 specified dimensions. | 
class  | 
SubspaceManhattanDistanceFunction
Manhattan distance function between  
NumberVectors only in specified
 dimensions. | 
class  | 
SubspaceMaximumDistanceFunction
Maximum distance function between  
NumberVectors only in specified
 dimensions. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractEditDistanceFunction
Edit Distance for FeatureVectors. 
 | 
class  | 
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors. 
 | 
class  | 
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors. 
 | 
class  | 
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors. 
 | 
class  | 
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors. 
 | 
class  | 
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
Kulczynski1SimilarityFunction
Kulczynski similarity 1. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<? super O> | 
InvertedDistanceSimilarityFunction.distanceFunction
Holds the similarity function. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusteringDistanceSimilarityFunction
Distance and similarity measure for clusterings. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ClusteringAdjustedRandIndexSimilarityFunction
Measure the similarity of clusters via the Adjusted Rand Index. 
 | 
class  | 
ClusteringBCubedF1SimilarityFunction
Measure the similarity of clusters via the BCubed F1 Index. 
 | 
class  | 
ClusteringFowlkesMallowsSimilarityFunction
Measure the similarity of clusters via the Fowlkes-Mallows Index. 
 | 
class  | 
ClusteringRandIndexSimilarityFunction
Measure the similarity of clusters via the Rand Index. 
 | 
class  | 
ClusterIntersectionSimilarityFunction
Measure the similarity of clusters via the intersection size. 
 | 
class  | 
ClusterJaccardSimilarityFunction
Measure the similarity of clusters via the Jaccard coefficient. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LinearKernelFunction
Linear Kernel function that computes a similarity between the two feature
 vectors x and y defined by \(x^T\cdot y\). 
 | 
class  | 
PolynomialKernelFunction
Polynomial Kernel function that computes a similarity between the two feature
 vectors x and y defined by \((x^T\cdot y+b)^{\text{degree}}\). 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveDistanceFunction<NumberVector> | 
EvaluateConcordantPairs.Parameterizer.distance
Distance function to use. 
 | 
private PrimitiveDistanceFunction<? super NumberVector> | 
EvaluateConcordantPairs.distanceFunction
Distance function to use. 
 | 
| Constructor and Description | 
|---|
EvaluateConcordantPairs(PrimitiveDistanceFunction<? super NumberVector> distance,
                       NoiseHandling noiseHandling)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveDistanceFunction<? super NumberVector> | 
WeightedCovarianceMatrixBuilder.weightDistance
Holds the distance function used for weight calculation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MultiLPNorm
Tutorial example Minowski-distance variation with different exponents for
 different dimensions for ELKI. 
 | 
class  | 
TutorialDistanceFunction
Tutorial distance function example for ELKI. 
 | 
Copyright © 2019 ELKI Development Team. License information.