| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.database.query.distance | 
 Prepared queries for distances 
 | 
| de.lmu.ifi.dbs.elki.database.query.range | 
 Prepared queries for ε-range queries, that return all objects within
 the radius ε 
 | 
| de.lmu.ifi.dbs.elki.database.query.similarity | 
 Prepared queries for similarity functions 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic | 
 Distance from probability theory, mostly divergences such as K-L-divergence,
 J-divergence, F-divergence, χ²-divergence, etc. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.set | 
 Distance functions for binary and set type data. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster | 
 Similarity measures for comparing clusters. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveSimilarityFunction<? super O> | 
PrimitiveDistanceSimilarityQuery.similarityFunction
Typed reference to the similarity function (usually the same as the
 distance function!) 
 | 
private PrimitiveSimilarityFunction<? super O> | 
SpatialPrimitiveDistanceSimilarityQuery.similarityFunction
Typed reference to the similarity function (usually the same as the
 distance function!) 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PrimitiveSimilarityFunction<? super O> | 
PrimitiveDistanceSimilarityQuery.getSimilarityFunction()  | 
PrimitiveSimilarityFunction<? super O> | 
SpatialPrimitiveDistanceSimilarityQuery.getSimilarityFunction()  | 
| Constructor and Description | 
|---|
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
                                PrimitiveDistanceFunction<? super O> distanceFunction,
                                PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
SpatialPrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
                                       SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
                                       PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private PrimitiveSimilarityFunction<? super O> | 
LinearScanPrimitiveSimilarityRangeQuery.rawsim
Unboxed similarity function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveSimilarityFunction<? super O> | 
PrimitiveSimilarityQuery.similarityFunction
The distance function we use. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PrimitiveSimilarityFunction<? super O> | 
PrimitiveSimilarityQuery.getSimilarityFunction()  | 
| Constructor and Description | 
|---|
PrimitiveSimilarityQuery(Relation<? extends O> relation,
                        PrimitiveSimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HellingerDistanceFunction
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity
 similarity, Matusita distance, Hellinger-Kakutani metric on a probability
 distribution. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
JaccardSimilarityDistanceFunction
A flexible extension of Jaccard similarity to non-binary vectors. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DBIDSimilarityFunction
Interface DBIDSimilarityFunction describes the requirements of any similarity
 function defined over object IDs. 
 | 
interface  | 
NormalizedPrimitiveSimilarityFunction<O>
Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDBIDSimilarityFunction
Abstract super class for distance functions needing a preprocessor. 
 | 
class  | 
AbstractVectorSimilarityFunction
Abstract base class for double-valued primitive similarity functions. 
 | 
class  | 
InvertedDistanceSimilarityFunction<O>
Adapter to use a primitive number-distance as similarity measure, by
 computing 1/distance. 
 | 
class  | 
Kulczynski1SimilarityFunction
Kulczynski similarity 1. 
 | 
class  | 
Kulczynski2SimilarityFunction
Kulczynski similarity 2. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusteringDistanceSimilarityFunction
Distance and similarity measure for clusterings. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ClusteringAdjustedRandIndexSimilarityFunction
Measure the similarity of clusters via the Adjusted Rand Index. 
 | 
class  | 
ClusteringBCubedF1SimilarityFunction
Measure the similarity of clusters via the BCubed F1 Index. 
 | 
class  | 
ClusteringFowlkesMallowsSimilarityFunction
Measure the similarity of clusters via the Fowlkes-Mallows Index. 
 | 
class  | 
ClusteringRandIndexSimilarityFunction
Measure the similarity of clusters via the Rand Index. 
 | 
class  | 
ClusterIntersectionSimilarityFunction
Measure the similarity of clusters via the intersection size. 
 | 
class  | 
ClusterJaccardSimilarityFunction
Measure the similarity of clusters via the Jaccard coefficient. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LaplaceKernelFunction
Laplace / exponential radial basis function kernel. 
 | 
class  | 
LinearKernelFunction
Linear Kernel function that computes a similarity between the two feature
 vectors x and y defined by \(x^T\cdot y\). 
 | 
class  | 
PolynomialKernelFunction
Polynomial Kernel function that computes a similarity between the two feature
 vectors x and y defined by \((x^T\cdot y+b)^{\text{degree}}\). 
 | 
class  | 
RadialBasisFunctionKernelFunction
Gaussian radial basis function kernel (RBF Kernel). 
 | 
class  | 
RationalQuadraticKernelFunction
Rational quadratic kernel, a less computational approximation of the Gaussian
 RBF kernel ( 
RadialBasisFunctionKernelFunction). | 
class  | 
SigmoidKernelFunction
Sigmoid kernel function (aka: hyperbolic tangent kernel, multilayer
 perceptron MLP kernel). 
 | 
| Constructor and Description | 
|---|
KernelMatrix(PrimitiveSimilarityFunction<? super O> kernelFunction,
            Relation<? extends O> relation,
            DBIDs ids)
Provides a new kernel matrix. 
 | 
Copyright © 2019 ELKI Development Team. License information.