| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation | 
 Affinity Propagation (AP) clustering. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | 
 Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased | 
 Angle-based outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods
 
 Methods that detect outliers in subspaces (projections) of the data set. 
 | 
| de.lmu.ifi.dbs.elki.database | 
 ELKI database layer - loading, storing, indexing and accessing data 
 | 
| de.lmu.ifi.dbs.elki.database.query.similarity | 
 Prepared queries for similarity functions 
 | 
| de.lmu.ifi.dbs.elki.database.relation | 
 Relations, materialized and virtual (views) 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | 
 Distance functions deriving distances from, e.g., similarity measures 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic | 
 Distance from probability theory, mostly divergences such as K-L-divergence,
 J-divergence, F-divergence, χ²-divergence, etc. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.set | 
 Distance functions for binary and set type data. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster | 
 Similarity measures for comparing clusters. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| de.lmu.ifi.dbs.elki.index | 
 Index structure implementations 
 | 
| de.lmu.ifi.dbs.elki.index.distancematrix | 
 Precomputed distance matrix. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) SimilarityFunction<? super O> | 
SimilarityBasedInitializationWithMedian.similarity
Similarity function. 
 | 
(package private) SimilarityFunction<? super O> | 
SimilarityBasedInitializationWithMedian.Parameterizer.similarity
Similarity function. 
 | 
| Constructor and Description | 
|---|
SimilarityBasedInitializationWithMedian(SimilarityFunction<? super O> similarity,
                                       double quantile)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected SimilarityFunction<O> | 
SimilarityNeighborPredicate.Parameterizer.distfun
Similarity function to use 
 | 
protected SimilarityFunction<? super O> | 
SimilarityNeighborPredicate.distFunc
Distance function to use 
 | 
| Constructor and Description | 
|---|
SimilarityNeighborPredicate(double epsilon,
                           SimilarityFunction<? super O> distFunc)
Full constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected SimilarityFunction<? super V> | 
ABOD.kernelFunction
Store the configured Kernel version. 
 | 
protected SimilarityFunction<V> | 
ABOD.Parameterizer.kernelFunction
Distance function. 
 | 
| Constructor and Description | 
|---|
ABOD(SimilarityFunction<? super V> kernelFunction)
Constructor for Angle-Based Outlier Detection (ABOD). 
 | 
FastABOD(SimilarityFunction<? super V> kernelFunction,
        int k)
Constructor for Angle-Based Outlier Detection (ABOD). 
 | 
LBABOD(SimilarityFunction<? super V> kernelFunction,
      int k,
      int l)
Actual constructor, with parameters. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private SimilarityFunction<V> | 
SOD.similarityFunction
Similarity function to use. 
 | 
private SimilarityFunction<V> | 
SOD.Parameterizer.similarityFunction
The similarity function. 
 | 
| Constructor and Description | 
|---|
SOD(int knn,
   double alpha,
   SimilarityFunction<V> similarityFunction,
   boolean models)
Constructor with parameters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <O> SimilarityQuery<O> | 
QueryUtil.getSimilarityQuery(Database database,
                  SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)
Get a similarity query, automatically choosing a relation. 
 | 
<O> SimilarityQuery<O> | 
Database.getSimilarityQuery(Relation<O> relation,
                  SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)
Get the similarity query for a particular similarity function. 
 | 
<O> SimilarityQuery<O> | 
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
                  SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityFunction<? super O> | 
SimilarityQuery.getSimilarityFunction()
Get the inner similarity function. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityQuery<O> | 
Relation.getSimilarityQuery(SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)
Get the similarity query for a particular similarity function. 
 | 
SimilarityQuery<O> | 
AbstractRelation.getSimilarityQuery(SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)  | 
default RangeQuery<O> | 
Relation.getSimilarityRangeQuery(SimilarityFunction<? super O> simFunction,
                       java.lang.Object... hints)
Get a range query object for the given similarity query. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
AbstractSimilarityAdapter.Parameterizer<O,S extends SimilarityFunction<? super O>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected SimilarityFunction<? super O> | 
AbstractSimilarityAdapter.similarityFunction
Holds the similarity function. 
 | 
protected S | 
AbstractSimilarityAdapter.Parameterizer.similarityFunction
Holds the similarity function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected java.lang.Class<SimilarityFunction<? super O>> | 
AbstractSimilarityAdapter.Parameterizer.ARBITRARY_SIMILARITY
Arbitrary Similarity functions 
 | 
| Constructor and Description | 
|---|
AbstractSimilarityAdapter(SimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HellingerDistanceFunction
Hellinger metric / affinity / kernel, Bhattacharyya coefficient, fidelity
 similarity, Matusita distance, Hellinger-Kakutani metric on a probability
 distribution. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
JaccardSimilarityDistanceFunction
A flexible extension of Jaccard similarity to non-binary vectors. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DBIDSimilarityFunction
Interface DBIDSimilarityFunction describes the requirements of any similarity
 function defined over object IDs. 
 | 
interface  | 
IndexBasedSimilarityFunction<O>
Interface for preprocessor/index based similarity functions. 
 | 
interface  | 
NormalizedPrimitiveSimilarityFunction<O>
Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. 
 | 
interface  | 
NormalizedSimilarityFunction<O>
Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
interface  | 
PrimitiveSimilarityFunction<O>
Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDBIDSimilarityFunction
Abstract super class for distance functions needing a preprocessor. 
 | 
class  | 
AbstractIndexBasedSimilarityFunction<O,F extends IndexFactory<O>>
Abstract super class for distance functions needing a preprocessor. 
 | 
class  | 
AbstractVectorSimilarityFunction
Abstract base class for double-valued primitive similarity functions. 
 | 
class  | 
FractionalSharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. 
 | 
class  | 
InvertedDistanceSimilarityFunction<O>
Adapter to use a primitive number-distance as similarity measure, by
 computing 1/distance. 
 | 
class  | 
Kulczynski1SimilarityFunction
Kulczynski similarity 1. 
 | 
class  | 
Kulczynski2SimilarityFunction
Kulczynski similarity 2. 
 | 
class  | 
SharedNearestNeighborSimilarityFunction<O>
SharedNearestNeighborSimilarityFunction with a pattern defined to accept
 Strings that define a non-negative Integer. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityFunction<? super T> | 
FractionalSharedNearestNeighborSimilarityFunction.Instance.getSimilarityFunction()  | 
SimilarityFunction<? super O> | 
SharedNearestNeighborSimilarityFunction.Instance.getSimilarityFunction()  | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusteringDistanceSimilarityFunction
Distance and similarity measure for clusterings. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ClusteringAdjustedRandIndexSimilarityFunction
Measure the similarity of clusters via the Adjusted Rand Index. 
 | 
class  | 
ClusteringBCubedF1SimilarityFunction
Measure the similarity of clusters via the BCubed F1 Index. 
 | 
class  | 
ClusteringFowlkesMallowsSimilarityFunction
Measure the similarity of clusters via the Fowlkes-Mallows Index. 
 | 
class  | 
ClusteringRandIndexSimilarityFunction
Measure the similarity of clusters via the Rand Index. 
 | 
class  | 
ClusterIntersectionSimilarityFunction
Measure the similarity of clusters via the intersection size. 
 | 
class  | 
ClusterJaccardSimilarityFunction
Measure the similarity of clusters via the Jaccard coefficient. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LaplaceKernelFunction
Laplace / exponential radial basis function kernel. 
 | 
class  | 
LinearKernelFunction
Linear Kernel function that computes a similarity between the two feature
 vectors x and y defined by \(x^T\cdot y\). 
 | 
class  | 
PolynomialKernelFunction
Polynomial Kernel function that computes a similarity between the two feature
 vectors x and y defined by \((x^T\cdot y+b)^{\text{degree}}\). 
 | 
class  | 
RadialBasisFunctionKernelFunction
Gaussian radial basis function kernel (RBF Kernel). 
 | 
class  | 
RationalQuadraticKernelFunction
Rational quadratic kernel, a less computational approximation of the Gaussian
 RBF kernel ( 
RadialBasisFunctionKernelFunction). | 
class  | 
SigmoidKernelFunction
Sigmoid kernel function (aka: hyperbolic tangent kernel, multilayer
 perceptron MLP kernel). 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityQuery<O> | 
SimilarityIndex.getSimilarityQuery(SimilarityFunction<? super O> simFunction,
                  java.lang.Object... hints)
Get a similarity query object for the given similarity function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected SimilarityFunction<? super O> | 
PrecomputedSimilarityMatrix.similarityFunction
Nested similarity function. 
 | 
protected SimilarityFunction<? super O> | 
PrecomputedSimilarityMatrix.Factory.similarityFunction
Nested similarity function. 
 | 
protected SimilarityFunction<? super O> | 
PrecomputedSimilarityMatrix.Factory.Parameterizer.similarityFunction
Nested similarity function. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityFunction<? super O> | 
PrecomputedSimilarityMatrix.PrecomputedSimilarityQuery.getSimilarityFunction()  | 
| Modifier and Type | Method and Description | 
|---|---|
SimilarityQuery<O> | 
PrecomputedSimilarityMatrix.getSimilarityQuery(SimilarityFunction<? super O> similarityFunction,
                  java.lang.Object... hints)  | 
| Constructor and Description | 
|---|
Factory(SimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
PrecomputedSimilarityMatrix(Relation<O> relation,
                           SimilarityFunction<? super O> similarityFunction)
Constructor. 
 | 
Copyright © 2019 ELKI Development Team. License information.