| Modifier and Type | Class and Description | 
|---|---|
static class  | 
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,F extends DistanceFunction<? super O>>
The actual instance bound to a particular database. 
 | 
static interface  | 
IndexBasedDistanceFunction.Instance<T,I extends Index>
Instance interface for Index based distance functions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected I | 
AbstractIndexBasedDistanceFunction.Instance.index
Index we use 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
AbstractIndexBasedSimilarityFunction.Instance<O,I extends Index>
The actual instance bound to a particular database. 
 | 
static interface  | 
IndexBasedSimilarityFunction.Instance<T,I extends Index>
Instance interface for index/preprocessor based distance functions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected I | 
AbstractIndexBasedSimilarityFunction.Instance.index
Parent index 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DistanceIndex<O>
Index with support for distance queries (e.g. precomputed distance matrixes,
 caches) 
 | 
interface  | 
DynamicIndex
Index that supports dynamic insertions and removals. 
 | 
interface  | 
KNNIndex<O>
Index with support for kNN queries. 
 | 
interface  | 
RangeIndex<O>
Index with support for range queries (radius queries). 
 | 
interface  | 
RKNNIndex<O>
Index with support for kNN queries. 
 | 
interface  | 
SimilarityIndex<O>
Index with support for similarity queries (e.g. precomputed similarity
 matrixes, caches) 
 | 
interface  | 
SimilarityRangeIndex<O>
Index with support for similarity range queries. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractIndex<O>
Abstract base class for indexes with some implementation defaults. 
 | 
class  | 
AbstractRefiningIndex<O>
Abstract base class for Filter-refinement indexes. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Index | 
IndexFactory.instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PrecomputedDistanceMatrix<O>
Distance matrix, for precomputing similarity for a small data set. 
 | 
class  | 
PrecomputedSimilarityMatrix<O>
Precomputed similarity matrix, for a small data set. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryIDistanceIndex<O>
In-memory iDistance index, a metric indexing method using a reference point
 embedding. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryInvertedIndex<V extends NumberVector>
Simple index using inverted lists, for cosine distance only. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryLSHIndex.Instance
Instance of a LSH index for a single relation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractPreprocessorIndex<O,R>
Abstract base class for simple preprocessor based indexes, requiring a simple
 object storage for preprocessing results. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMaterializeKNNPreprocessor<O>
Abstract base class for KNN Preprocessors. 
 | 
class  | 
CachedDoubleDistanceKNNPreprocessor<O>
Preprocessor that loads an existing cached kNN result. 
 | 
class  | 
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector>
Class to materialize the kNN using a spatial join on an R-tree. 
 | 
class  | 
MaterializeKNNAndRKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. 
 | 
class  | 
MaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
NaiveProjectedKNNPreprocessor<O extends NumberVector>
Compute the approximate k nearest neighbors using 1 dimensional projections. 
 | 
class  | 
NNDescent<O>
NN-desent (also known as KNNGraph) is an approximate nearest neighbor search
 algorithm beginning with a random sample, then iteratively refining this
 sample until. 
 | 
class  | 
PartitionApproximationMaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
RandomSampleKNNPreprocessor<O>
Class that computed the kNN only on a random sample. 
 | 
class  | 
SpacefillingKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves. 
 | 
class  | 
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves. 
 | 
class  | 
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
FilteredLocalPCAIndex<NV extends NumberVector>
Interface for an index providing local PCA results. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractFilteredPCAIndex<NV extends NumberVector>
Abstract base class for a local PCA based index. 
 | 
class  | 
KNNQueryFilteredPCAIndex<NV extends NumberVector>
Provides the local neighborhood to be considered in the PCA as the k nearest
 neighbors of an object. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
PreferenceVectorIndex<NV extends NumberVector>
Interface for an index providing preference vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractPreferenceVectorIndex<NV extends NumberVector>
Abstract base class for preference vector based algorithms. 
 | 
class  | 
DiSHPreferenceVectorIndex<V extends NumberVector>
Preprocessor for DiSH preference vector assignment to objects of a certain
 database. 
 | 
class  | 
HiSCPreferenceVectorIndex<V extends NumberVector>
Preprocessor for HiSC preference vector assignment to objects of a certain
 database. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
SharedNearestNeighborIndex<O>
Interface for an index providing nearest neighbor sets. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SharedNearestNeighborPreprocessor<O>
A preprocessor for annotation of the ids of nearest neighbors to each
 database object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LatLngAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lat/Lng pairs) by using a projection to 3D
 coordinates (WGS-86 to ECEF). 
 | 
class  | 
LngLatAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lng/Lat pairs) by using a projection to 3D
 coordinates (WGS-86 to ECEF). 
 | 
class  | 
ProjectedIndex<O,I>
Class to index data in an arbitrary projection only. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Index | 
ProjectedIndex.inner
Inner index. 
 | 
| Constructor and Description | 
|---|
LatLngAsECEFIndex(Relation<? extends O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
LngLatAsECEFIndex(Relation<? extends O> relation,
                 Projection<O,O> proj,
                 Relation<O> view,
                 Index inner,
                 boolean norefine)
Constructor. 
 | 
ProjectedIndex(Relation<? extends O> relation,
              Projection<O,I> proj,
              Relation<I> view,
              Index inner,
              boolean norefine,
              double kmulti)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
IndexTree<N extends Node<E>,E extends Entry>
Abstract super class for all tree based index classes. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MetricalIndexTree<O,N extends Node<E>,E extends Entry>
Abstract super class for all metrical index classes. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractCoverTree<O>
Abstract base class for cover tree variants. 
 | 
class  | 
CoverTree<O>
Cover tree data structure (in-memory). 
 | 
class  | 
SimplifiedCoverTree<O>
Simplified cover tree data structure (in-memory). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMTree<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry,S extends MTreeSettings<O,N,E>>
Abstract super class for all M-Tree variants. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMkTree<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry,S extends MTreeSettings<O,N,E>>
Abstract class for all M-Tree variants supporting processing of reverse
 k-nearest neighbor queries by using the k-nn distances of the entries, where
 k is less than or equal to the given parameter. 
 | 
class  | 
AbstractMkTreeUnified<O,N extends AbstractMTreeNode<O,N,E>,E extends MTreeEntry,S extends MkTreeSettings<O,N,E>>
Abstract class for all M-Tree variants supporting processing of reverse
 k-nearest neighbor queries by using the k-nn distances of the entries, where
 k is less than or equal to the given parameter. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkAppTree<O>
MkAppTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkAppTreeIndex<O>
MkAppTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkCoPTree<O>
MkCopTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkCoPTreeIndex<O>
MkCoPTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkMaxTree<O>
MkMaxTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k <= k_max. 
 | 
class  | 
MkMaxTreeIndex<O>
MkMax tree 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkTabTree<O>
MkTabTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkTabTreeIndex<O>
MkTabTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MTree<O>
MTree is a metrical index structure based on the concepts of the M-Tree. 
 | 
class  | 
MTreeIndex<O>
Class for using an m-tree as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SpatialIndexTree<N extends SpatialNode<N,E>,E extends SpatialEntry>
Abstract super class for all spatial index tree classes. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MinimalisticMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree. 
 | 
class  | 
SmallMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractRStarTree<N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,S extends RTreeSettings>
Abstract superclass for index structures based on a R*-Tree. 
 | 
class  | 
NonFlatRStarTree<N extends AbstractRStarTreeNode<N,E>,E extends SpatialEntry,S extends RTreeSettings>
Abstract superclass for all non-flat R*-Tree variants. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DeLiCluTree
DeLiCluTree is a spatial index structure based on an R-Tree. 
 | 
class  | 
DeLiCluTreeIndex<O extends NumberVector>
The common use of the DeLiClu tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FlatRStarTree
FlatRTree is a spatial index structure based on a R*-Tree but with a flat
 directory. 
 | 
class  | 
FlatRStarTreeIndex<O extends NumberVector>
The common use of the flat rstar tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RdKNNTree<O extends NumberVector>
RDkNNTree is a spatial index structure based on the concepts of the R*-Tree
 supporting efficient processing of reverse k nearest neighbor queries. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RStarTree
RStarTree is a spatial index structure based on the concepts of the R*-Tree. 
 | 
class  | 
RStarTreeIndex<O extends NumberVector>
The common use of the rstar tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PartialVAFile<V extends NumberVector>
PartialVAFile. 
 | 
class  | 
VAFile<V extends NumberVector>
Vector-approximation file (VAFile)
 
 Reference:
 
 R. 
 | 
Copyright © 2019 ELKI Development Team. License information.