| Modifier and Type | Class and Description | 
|---|---|
class  | 
PrecomputedDistanceMatrix<O>
Distance matrix, for precomputing similarity for a small data set. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryIDistanceIndex<O>
In-memory iDistance index, a metric indexing method using a reference point
 embedding. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryInvertedIndex<V extends NumberVector>
Simple index using inverted lists, for cosine distance only. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
InMemoryLSHIndex.Instance
Instance of a LSH index for a single relation. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMaterializeKNNPreprocessor<O>
Abstract base class for KNN Preprocessors. 
 | 
class  | 
CachedDoubleDistanceKNNPreprocessor<O>
Preprocessor that loads an existing cached kNN result. 
 | 
class  | 
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector>
Class to materialize the kNN using a spatial join on an R-tree. 
 | 
class  | 
MaterializeKNNAndRKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. 
 | 
class  | 
MaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
NaiveProjectedKNNPreprocessor<O extends NumberVector>
Compute the approximate k nearest neighbors using 1 dimensional projections. 
 | 
class  | 
NNDescent<O>
NN-desent (also known as KNNGraph) is an approximate nearest neighbor search
 algorithm beginning with a random sample, then iteratively refining this
 sample until. 
 | 
class  | 
PartitionApproximationMaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
RandomSampleKNNPreprocessor<O>
Class that computed the kNN only on a random sample. 
 | 
class  | 
SpacefillingKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves. 
 | 
class  | 
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves. 
 | 
class  | 
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LatLngAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lat/Lng pairs) by using a projection to 3D
 coordinates (WGS-86 to ECEF). 
 | 
class  | 
LngLatAsECEFIndex<O extends NumberVector>
Index a 2d data set (consisting of Lng/Lat pairs) by using a projection to 3D
 coordinates (WGS-86 to ECEF). 
 | 
class  | 
ProjectedIndex<O,I>
Class to index data in an arbitrary projection only. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CoverTree<O>
Cover tree data structure (in-memory). 
 | 
class  | 
SimplifiedCoverTree<O>
Simplified cover tree data structure (in-memory). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkAppTreeIndex<O>
MkAppTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkCoPTreeIndex<O>
MkCoPTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkMaxTreeIndex<O>
MkMax tree 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkTabTreeIndex<O>
MkTabTree used as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MTreeIndex<O>
Class for using an m-tree as database index. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MinimalisticMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree. 
 | 
class  | 
SmallMemoryKDTree<O extends NumberVector>
Simple implementation of a static in-memory K-D-tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DeLiCluTreeIndex<O extends NumberVector>
The common use of the DeLiClu tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FlatRStarTreeIndex<O extends NumberVector>
The common use of the flat rstar tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RdKNNTree<O extends NumberVector>
RDkNNTree is a spatial index structure based on the concepts of the R*-Tree
 supporting efficient processing of reverse k nearest neighbor queries. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RStarTreeIndex<O extends NumberVector>
The common use of the rstar tree: indexing number vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PartialVAFile<V extends NumberVector>
PartialVAFile. 
 | 
class  | 
VAFile<V extends NumberVector>
Vector-approximation file (VAFile)
 
 Reference:
 
 R. 
 | 
Copyright © 2019 ELKI Development Team. License information.