@Reference(authors="M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni", title="Locality-sensitive hashing scheme based on p-stable distributions", booktitle="Proc. 20th Annual Symposium on Computational Geometry", url="https://doi.org/10.1145/997817.997857", bibkey="DBLP:conf/compgeom/DatarIIM04") public class ManhattanHashFunctionFamily extends AbstractProjectedHashFunctionFamily
Reference:
M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni
Locality-sensitive hashing scheme based on p-stable distributions
Proc. 20th Annual Symposium on Computational Geometry
| Modifier and Type | Class and Description |
|---|---|
static class |
ManhattanHashFunctionFamily.Parameterizer
Parameterization class.
|
k, proj, random, width| Constructor and Description |
|---|
ManhattanHashFunctionFamily(RandomFactory random,
double width,
int k)
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
boolean |
isCompatible(DistanceFunction<?> df)
Check whether the given distance function can be accelerated using this
hash family.
|
generateHashFunctions, getInputTypeRestrictionpublic ManhattanHashFunctionFamily(RandomFactory random, double width, int k)
random - Random generatorwidth - Bin widthk - Number of projections to combine.public boolean isCompatible(DistanceFunction<?> df)
LocalitySensitiveHashFunctionFamilydf - Distance function.true when appropriate.Copyright © 2019 ELKI Development Team. License information.