| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.database.query.knn | 
 Prepared queries for k nearest neighbor (kNN) queries 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection | 
 Visualizers for object selection based on 2D projections 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private AbstractMaterializeKNNPreprocessor<O> | 
PreprocessorKNNQuery.preprocessor
The last preprocessor result 
 | 
| Modifier and Type | Method and Description | 
|---|---|
AbstractMaterializeKNNPreprocessor<O> | 
PreprocessorKNNQuery.getPreprocessor()
Get the preprocessor instance. 
 | 
| Constructor and Description | 
|---|
PreprocessorKNNQuery(Relation<? extends O> relation,
                    AbstractMaterializeKNNPreprocessor<O> preprocessor)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CachedDoubleDistanceKNNPreprocessor<O>
Preprocessor that loads an existing cached kNN result. 
 | 
class  | 
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector>
Class to materialize the kNN using a spatial join on an R-tree. 
 | 
class  | 
MaterializeKNNAndRKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. 
 | 
class  | 
MaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
NNDescent<O>
NN-desent (also known as KNNGraph) is an approximate nearest neighbor search
 algorithm beginning with a random sample, then iteratively refining this
 sample until. 
 | 
class  | 
PartitionApproximationMaterializeKNNPreprocessor<O>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
class  | 
RandomSampleKNNPreprocessor<O>
Class that computed the kNN only on a random sample. 
 | 
class  | 
SpacefillingMaterializeKNNPreprocessor<O extends NumberVector>
Compute the nearest neighbors approximatively using space filling curves. 
 | 
class  | 
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
abstract AbstractMaterializeKNNPreprocessor<O> | 
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation)  | 
| Modifier and Type | Field and Description | 
|---|---|
private AbstractMaterializeKNNPreprocessor<? extends NumberVector> | 
DistanceFunctionVisualization.Instance.result
The selection result we work on 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
DistanceFunctionVisualization.getLPNormP(AbstractMaterializeKNNPreprocessor<?> kNN)
Get the "p" value of an Lp norm. 
 | 
static boolean | 
DistanceFunctionVisualization.isAngularDistance(AbstractMaterializeKNNPreprocessor<?> kNN)
Test whether the given preprocessor used an angular distance function 
 | 
Copyright © 2019 ELKI Development Team. License information.