| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan | 
 Generalized DBSCAN
 
 Generalized DBSCAN is an abstraction of the original DBSCAN idea,
 that allows the use of arbitrary "neighborhood" and "core point" predicates. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased | 
 Angle-based outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise | 
 Normalizations operating on columns / variates; where each column is treated independently. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering | 
 Evaluation of clustering results 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator | 
 Estimators for statistical distributions. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.tests | 
 Statistical tests 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private MeanVariance | 
FourCNeighborPredicate.mvCorDim
Tool to help with parameterization. 
 | 
private MeanVariance | 
PreDeConNeighborPredicate.mvSize
Tool to help with parameterization. 
 | 
private MeanVariance | 
FourCNeighborPredicate.mvSize
Tool to help with parameterization. 
 | 
private MeanVariance | 
FourCNeighborPredicate.mvSize2
Tool to help with parameterization. 
 | 
private MeanVariance | 
PreDeConNeighborPredicate.mvVar
Tool to help with parameterization. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected double | 
ABOD.computeABOF(KernelMatrix kernelMatrix,
           DBIDRef pA,
           DBIDArrayIter pB,
           DBIDArrayIter pC,
           MeanVariance s)
Compute the exact ABOF value. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) MeanVariance[] | 
AttributeWiseVarianceNormalization.mvs
Temporary storage used during initialization. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
MeanVariance | 
ClusterContingencyTable.averageSymmetricGini()
Compute the average Gini for each cluster (in both clusterings -
 symmetric). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MeanVarianceMinMax
Class collecting mean, variance, minimum and maximum statistics. 
 | 
class  | 
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static MeanVariance[] | 
MeanVariance.newArray(int dimensionality)
Create and initialize a new array of MeanVariance 
 | 
MeanVariance | 
MeanVariance.put(double[] vals)
Add values with weight 1.0 
 | 
MeanVariance | 
MeanVarianceMinMax.put(double[] vals,
   double[] weights)  | 
MeanVariance | 
MeanVariance.put(double[] vals,
   double[] weights)  | 
| Constructor and Description | 
|---|
MeanVariance(MeanVariance other)
Constructor from other instance 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ExpGammaDistribution | 
ExpGammaExpMOMEstimator.estimateFromExpMeanVariance(MeanVariance mv)  | 
D | 
LogMeanVarianceEstimator.estimateFromLogMeanVariance(MeanVariance mv,
                           double shift)
Estimate the distribution from mean and variance. 
 | 
LogNormalDistribution | 
LogNormalLogMOMEstimator.estimateFromLogMeanVariance(MeanVariance mv,
                           double shift)  | 
InverseGaussianDistribution | 
InverseGaussianMOMEstimator.estimateFromMeanVariance(MeanVariance mv)  | 
ExponentialDistribution | 
ExponentialMOMEstimator.estimateFromMeanVariance(MeanVariance mv)  | 
D | 
MeanVarianceDistributionEstimator.estimateFromMeanVariance(MeanVariance mv)
Estimate the distribution from mean and variance. 
 | 
NormalDistribution | 
NormalMOMEstimator.estimateFromMeanVariance(MeanVariance mv)  | 
GammaDistribution | 
GammaMOMEstimator.estimateFromMeanVariance(MeanVariance mv)  | 
| Modifier and Type | Method and Description | 
|---|---|
static int | 
WelchTTest.calculateDOF(MeanVariance mv1,
            MeanVariance mv2)
Calculates the degree of freedom according to Welch-Satterthwaite 
 | 
static double | 
WelchTTest.calculateTestStatistic(MeanVariance mv1,
                      MeanVariance mv2)
Calculate the statistic of Welch's t test using statistical moments of the
 provided data samples 
 | 
Copyright © 2019 ELKI Development Team. License information.