| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering | 
 Biclustering algorithms 
 | 
| de.lmu.ifi.dbs.elki.data.synthetic.bymodel | 
 Generator using a distribution model specified in an XML configuration file
 
  
GeneratorXMLSpec is a standalone
 application that loads an XML specification file and generates a synthetic
 data set according to the specifications given. | 
| de.lmu.ifi.dbs.elki.datasource.filter.cleaning | 
 Filters for data cleaning. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise | 
 Normalizations operating on columns / variates; where each column is treated independently. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution | 
 Standard distributions, with random generation functionalities 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator | 
 Estimators for statistical distributions. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta | 
 Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble. 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | 
 Scaling of outlier scores, that require a statistical analysis of the
 occurring values 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Distribution | 
ChengAndChurch.dist
Distribution to sample random replacement values from. 
 | 
private Distribution | 
ChengAndChurch.Parameterizer.dist
Distribution of replacement values. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
ChengAndChurch.BiclusterCandidate.maskMatrix(double[][] mat,
          Distribution replacement)
Updates the mask with replacement values for all data in the given rows
 and columns. 
 | 
| Constructor and Description | 
|---|
ChengAndChurch(double delta,
              double alpha,
              int n,
              Distribution dist)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private java.util.List<Distribution> | 
GeneratorSingleCluster.axes
The distribution generators for each axis 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Distribution | 
GeneratorSingleCluster.getDistribution(int i)
Get distribution along (generator) axis i. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
GeneratorSingleCluster.addGenerator(Distribution gen)
Add a new generator to the cluster. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Distribution | 
ReplaceNaNWithRandomFilter.dist
Distribution to generate replacement values with. 
 | 
private Distribution | 
ReplaceNaNWithRandomFilter.Parameterizer.dist
Distribution to generate replacement values with. 
 | 
| Constructor and Description | 
|---|
ReplaceNaNWithRandomFilter(Distribution dist)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected java.util.List<Distribution> | 
AttributeWiseCDFNormalization.dists
Stores the estimated distributions 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected Distribution | 
AttributeWiseCDFNormalization.findBestFit(java.util.List<V> col,
           AttributeWiseCDFNormalization.Adapter adapter,
           int d,
           double[] test)
Find the best fitting distribution. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistribution
Abstract base class for distributions. 
 | 
class  | 
BetaDistribution
Beta Distribution with implementation of the regularized incomplete beta
 function 
 | 
class  | 
CauchyDistribution
Cauchy distribution. 
 | 
class  | 
ChiDistribution
Chi distribution. 
 | 
class  | 
ChiSquaredDistribution
Chi-Squared distribution (a specialization of the Gamma distribution). 
 | 
class  | 
ConstantDistribution
Pseudo distribution, that has a unique constant value. 
 | 
class  | 
ExpGammaDistribution
Exp-Gamma Distribution, with random generation and density functions. 
 | 
class  | 
ExponentialDistribution
Exponential distribution. 
 | 
class  | 
ExponentiallyModifiedGaussianDistribution
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
 is a combination of a normal distribution and an exponential distribution. 
 | 
class  | 
GammaDistribution
Gamma Distribution, with random generation and density functions. 
 | 
class  | 
GeneralizedExtremeValueDistribution
Generalized Extreme Value (GEV) distribution, also known as Fisher–Tippett
 distribution. 
 | 
class  | 
GeneralizedLogisticAlternateDistribution
Generalized logistic distribution. 
 | 
class  | 
GeneralizedLogisticDistribution
Generalized logistic distribution. 
 | 
class  | 
GeneralizedParetoDistribution
Generalized Pareto Distribution (GPD), popular for modeling long tail
 distributions. 
 | 
class  | 
GumbelDistribution
Gumbel distribution, also known as Log-Weibull distribution. 
 | 
class  | 
HaltonUniformDistribution
Halton sequences are a pseudo-uniform distribution. 
 | 
class  | 
InverseGaussianDistribution
Inverse Gaussian distribution aka Wald distribution. 
 | 
class  | 
KappaDistribution
Kappa distribution, by Hosking. 
 | 
class  | 
LaplaceDistribution
Laplace distribution also known as double exponential distribution 
 | 
class  | 
LogGammaDistribution
Log-Gamma Distribution, with random generation and density functions. 
 | 
class  | 
LogisticDistribution
Logistic distribution. 
 | 
class  | 
LogLogisticDistribution
Log-Logistic distribution also known as Fisk distribution. 
 | 
class  | 
LogNormalDistribution
Log-Normal distribution. 
 | 
class  | 
NormalDistribution
Gaussian distribution aka normal distribution 
 | 
class  | 
PoissonDistribution
INCOMPLETE implementation of the poisson distribution. 
 | 
class  | 
RayleighDistribution
Rayleigh distribution, a special case of the Weibull distribution. 
 | 
class  | 
SkewGeneralizedNormalDistribution
Generalized normal distribution by adding a skew term, similar to lognormal
 distributions. 
 | 
class  | 
StudentsTDistribution
Student's t distribution. 
 | 
class  | 
UniformDistribution
Uniform distribution. 
 | 
class  | 
WeibullDistribution
Weibull distribution. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected abstract Distribution | 
AbstractDistribution.Parameterizer.makeInstance()  | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DistributionEstimator<D extends Distribution>
Estimate distribution parameters from a sample. 
 | 
interface  | 
LMMDistributionEstimator<D extends Distribution>
Interface for distribution estimators based on the methods of L-Moments
 (LMM). 
 | 
interface  | 
LogMADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM) in logspace. 
 | 
interface  | 
LogMeanVarianceEstimator<D extends Distribution>
Estimators that work on Mean and Variance only (i.e. the first two moments
 only). 
 | 
interface  | 
LogMOMDistributionEstimator<D extends Distribution>
Distribution estimators that use the method of moments (MOM) in logspace,
 i.e. that only need the statistical moments of a data set after logarithms. 
 | 
interface  | 
MADDistributionEstimator<D extends Distribution>
Distribuition estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
interface  | 
MeanVarianceDistributionEstimator<D extends Distribution>
Interface for estimators that only need mean and variance. 
 | 
interface  | 
MOMDistributionEstimator<D extends Distribution>
Distribution estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Distribution | 
UniformMinMaxEstimator.estimate(double min,
        double max)
Estimate parameters from minimum and maximum observed. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
TrimmedEstimator<D extends Distribution>
Trimmed wrapper around other estimators. 
 | 
static class  | 
TrimmedEstimator.Parameterizer<D extends Distribution>
Parameterization class. 
 | 
class  | 
WinsorizingEstimator<D extends Distribution>
Winsorizing or Georgization estimator. 
 | 
static class  | 
WinsorizingEstimator.Parameterizer<D extends Distribution>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Distribution | 
BestFitEstimator.BestFit.dist
Best match. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<A> Distribution | 
BestFitEstimator.estimate(A data,
        NumberArrayAdapter<?,A> adapter)  | 
| Modifier and Type | Method and Description | 
|---|---|
java.lang.Class<? super Distribution> | 
BestFitEstimator.getDistributionClass()  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
BestFitEstimator.BestFit.test(DistributionEstimator<?> est,
    Distribution d)
Test the goodness of fit, keep the best. 
 | 
private static double | 
BestFitEstimator.BestFit.testFit(double[] x,
       double[] test,
       Distribution dist)
Test the quality of a fit. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Distribution | 
COPOutlierScaling.dist
Score distribution. 
 | 
Copyright © 2019 ELKI Development Team. License information.