| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise | 
 Normalizations operating on columns / variates; where each column is treated independently. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator | 
 Estimators for statistical distributions. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta | 
 Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble. 
 | 
| Class and Description | 
|---|
| DistributionEstimator
 Estimate distribution parameters from a sample. 
 | 
| Class and Description | 
|---|
| CauchyMADEstimator
 Estimate Cauchy distribution parameters using Median and MAD. 
 | 
| DistributionEstimator
 Estimate distribution parameters from a sample. 
 | 
| EMGOlivierNorbergEstimator
 Naive distribution estimation using mean and sample variance. 
 | 
| ExpGammaExpMOMEstimator
 Simple parameter estimation for the ExpGamma distribution. 
 | 
| ExponentialLMMEstimator
 Estimate the parameters of a Gamma Distribution, using the methods of
 L-Moments (LMM). 
 | 
| ExponentialMADEstimator
 Estimate Exponential distribution parameters using Median and MAD. 
 | 
| ExponentialMedianEstimator
 Estimate Exponential distribution parameters using Median and MAD. 
 | 
| ExponentialMOMEstimator
 Estimate Exponential distribution parameters using the mean, which is the
 maximum-likelihood estimate (MLE), but not very robust. 
 | 
| GammaChoiWetteEstimator
 Estimate distribution parameters using the method by Choi and Wette. 
 | 
| GammaLMMEstimator
 Estimate the parameters of a Gamma Distribution, using the methods of
 L-Moments (LMM). 
 | 
| GammaMOMEstimator
 Simple parameter estimation for the Gamma distribution. 
 | 
| GeneralizedExtremeValueLMMEstimator
 Estimate the parameters of a Generalized Extreme Value Distribution, using
 the methods of L-Moments (LMM). 
 | 
| GeneralizedLogisticAlternateLMMEstimator
 Estimate the parameters of a Generalized Logistic Distribution, using the
 methods of L-Moments (LMM). 
 | 
| GeneralizedParetoLMMEstimator
 Estimate the parameters of a Generalized Pareto Distribution (GPD), using the
 methods of L-Moments (LMM). 
 | 
| GumbelLMMEstimator
 Estimate the parameters of a Gumbel Distribution, using the methods of
 L-Moments (LMM). 
 | 
| GumbelMADEstimator
 Parameter estimation via median and median absolute deviation from median
 (MAD). 
 | 
| InverseGaussianMLEstimator
 Estimate parameter of the inverse Gaussian (Wald) distribution. 
 | 
| InverseGaussianMOMEstimator
 Estimate parameter of the inverse Gaussian (Wald) distribution. 
 | 
| LaplaceLMMEstimator
 Estimate Laplace distribution parameters using the method of L-Moments (LMM). 
 | 
| LaplaceMADEstimator
 Estimate Laplace distribution parameters using Median and MAD. 
 | 
| LaplaceMLEEstimator
 Estimate Laplace distribution parameters using Median and mean deviation from
 median. 
 | 
| LMMDistributionEstimator
 Interface for distribution estimators based on the methods of L-Moments
 (LMM). 
 | 
| LogGammaLogMOMEstimator
 Simple parameter estimation for the LogGamma distribution. 
 | 
| LogisticLMMEstimator
 Estimate the parameters of a Logistic Distribution, using the methods of
 L-Moments (LMM). 
 | 
| LogisticMADEstimator
 Estimate Logistic distribution parameters using Median and MAD. 
 | 
| LogLogisticMADEstimator
 Estimate Logistic distribution parameters using Median and MAD. 
 | 
| LogMADDistributionEstimator
 Distribuition estimators that use the method of moments (MOM) in logspace. 
 | 
| LogMeanVarianceEstimator
 Estimators that work on Mean and Variance only (i.e. the first two moments
 only). 
 | 
| LogMOMDistributionEstimator
 Distribution estimators that use the method of moments (MOM) in logspace,
 i.e. that only need the statistical moments of a data set after logarithms. 
 | 
| LogNormalBilkovaLMMEstimator
 Alternate estimate the parameters of a log Gamma Distribution, using the
 methods of L-Moments (LMM) for the Generalized Normal Distribution. 
 | 
| LogNormalLevenbergMarquardtKDEEstimator
 Distribution parameter estimation using Levenberg-Marquardt iterative
 optimization and a kernel density estimation. 
 | 
| LogNormalLMMEstimator
 Estimate the parameters of a log Normal Distribution, using the methods of
 L-Moments (LMM) for the Generalized Normal Distribution. 
 | 
| LogNormalLogMADEstimator
 Estimator using Medians. 
 | 
| LogNormalLogMOMEstimator
 Naive distribution estimation using mean and sample variance. 
 | 
| MADDistributionEstimator
 Distribuition estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
| MeanVarianceDistributionEstimator
 Interface for estimators that only need mean and variance. 
 | 
| MOMDistributionEstimator
 Distribution estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
| NormalLevenbergMarquardtKDEEstimator
 Distribution parameter estimation using Levenberg-Marquardt iterative
 optimization and a kernel density estimation. 
 | 
| NormalLMMEstimator
 Estimate the parameters of a normal distribution using the method of
 L-Moments (LMM). 
 | 
| NormalMADEstimator
 Estimator using Medians. 
 | 
| NormalMOMEstimator
 Naive maximum-likelihood estimations for the normal distribution using mean
 and sample variance. 
 | 
| RayleighLMMEstimator
 Estimate the scale parameter of a (non-shifted) RayleighDistribution using
 the method of L-Moments (LMM). 
 | 
| RayleighMADEstimator
 Estimate the parameters of a RayleighDistribution using the MAD. 
 | 
| RayleighMLEEstimator
 Estimate the scale parameter of a (non-shifted) RayleighDistribution using a
 maximum likelihood estimate. 
 | 
| SkewGNormalLMMEstimator
 Estimate the parameters of a skew Normal Distribution (Hoskin's Generalized
 Normal Distribution), using the methods of L-Moments (LMM). 
 | 
| UniformEnhancedMinMaxEstimator
 Slightly improved estimation, that takes sample size into account and
 enhances the interval appropriately. 
 | 
| UniformLMMEstimator
 Estimate the parameters of a normal distribution using the method of
 L-Moments (LMM). 
 | 
| UniformMADEstimator
 Estimate Uniform distribution parameters using Median and MAD. 
 | 
| UniformMinMaxEstimator
 Estimate the uniform distribution by computing min and max. 
 | 
| WeibullLMMEstimator
 Estimate parameters of the Weibull distribution using the method of L-Moments
 (LMM). 
 | 
| WeibullLogMADEstimator
 Parameter estimation via median and median absolute deviation from median
 (MAD). 
 | 
| Class and Description | 
|---|
| DistributionEstimator
 Estimate distribution parameters from a sample. 
 | 
| LMMDistributionEstimator
 Interface for distribution estimators based on the methods of L-Moments
 (LMM). 
 | 
| LogMADDistributionEstimator
 Distribuition estimators that use the method of moments (MOM) in logspace. 
 | 
| LogMOMDistributionEstimator
 Distribution estimators that use the method of moments (MOM) in logspace,
 i.e. that only need the statistical moments of a data set after logarithms. 
 | 
| MADDistributionEstimator
 Distribuition estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
| MOMDistributionEstimator
 Distribution estimators that use the method of moments (MOM), i.e. that only
 need the statistical moments of a data set. 
 | 
Copyright © 2019 ELKI Development Team. License information.