@Reference(authors="Hans-Peter Kriegel, Peer Kr\u00f6ger, Erich Schubert, Arthur Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM 2011)", url="https://doi.org/10.1137/1.9781611972818.2", bibkey="DBLP:conf/sdm/KriegelKSZ11") public class MinusLogGammaScaling extends OutlierGammaScaling
Reference:
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek
Interpreting and Unifying Outlier Scores
Proc. 11th SIAM International Conference on Data Mining (SDM 2011)
| Modifier and Type | Class and Description |
|---|---|
static class |
MinusLogGammaScaling.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
(package private) double |
max
Maximum value seen
|
(package private) double |
mlogmax
Minimum value (after log step, so maximum again)
|
| Constructor and Description |
|---|
MinusLogGammaScaling()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
protected double |
preScale(double score)
Normalize data if necessary.
|
getMax, getMin, getScaled, preparedouble max
double mlogmax
protected double preScale(double score)
OutlierGammaScaling
Note: this is overridden by MinusLogGammaScaling!
preScale in class OutlierGammaScalingscore - Original scorepublic void prepare(OutlierResult or)
OutlierScalingprepare in interface OutlierScalingprepare in class OutlierGammaScalingor - Outlier result to useCopyright © 2019 ELKI Development Team. License information.