Package elki.algorithm
Class DependencyDerivator.Par<V extends NumberVector>
- java.lang.Object
-
- elki.algorithm.DependencyDerivator.Par<V>
-
- All Implemented Interfaces:
Parameterizer
- Enclosing class:
- DependencyDerivator<V extends NumberVector>
public static class DependencyDerivator.Par<V extends NumberVector> extends java.lang.Object implements Parameterizer
Parameterization class.- Author:
- Erich Schubert
-
-
Field Summary
Fields Modifier and Type Field Description static OptionIDDEPENDENCY_DERIVATOR_RANDOM_SAMPLE_IDFlag to use random sample (use knn query around centroid, if flag is not set).protected NumberVectorDistance<? super V>distanceThe distance function to use.protected EigenPairFilterfilterFilter to select eigenvectors.static OptionIDOUTPUT_ACCURACY_IDParameter to specify the threshold for output accuracy fraction digits, must be an integer equal to or greater than 0.protected intoutputAccuracyOutput accuracy.protected PCARunnerpcaClass to compute PCA withprotected booleanrandomSampleFlag to enable random samplingstatic OptionIDSAMPLE_SIZE_IDOptional parameter to specify the threshold for the size of the random sample to use, must be an integer greater than 0.protected intsampleSizeSample size.
-
Constructor Summary
Constructors Constructor Description Par()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidconfigure(Parameterization config)Configure the class.DependencyDerivator<V>make()Make an instance after successful configuration.
-
-
-
Field Detail
-
DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
public static final OptionID DEPENDENCY_DERIVATOR_RANDOM_SAMPLE_ID
Flag to use random sample (use knn query around centroid, if flag is not set).
-
OUTPUT_ACCURACY_ID
public static final OptionID OUTPUT_ACCURACY_ID
Parameter to specify the threshold for output accuracy fraction digits, must be an integer equal to or greater than 0.
-
SAMPLE_SIZE_ID
public static final OptionID SAMPLE_SIZE_ID
Optional parameter to specify the threshold for the size of the random sample to use, must be an integer greater than 0.
-
distance
protected NumberVectorDistance<? super V extends NumberVector> distance
The distance function to use.
-
outputAccuracy
protected int outputAccuracy
Output accuracy.
-
sampleSize
protected int sampleSize
Sample size.
-
randomSample
protected boolean randomSample
Flag to enable random sampling
-
pca
protected PCARunner pca
Class to compute PCA with
-
filter
protected EigenPairFilter filter
Filter to select eigenvectors.
-
-
Method Detail
-
configure
public void configure(Parameterization config)
Description copied from interface:ParameterizerConfigure the class.Note: the status is collected by the parameterization object, so that multiple errors may arise and be reported in one run.
- Specified by:
configurein interfaceParameterizer- Parameters:
config- Parameterization
-
make
public DependencyDerivator<V> make()
Description copied from interface:ParameterizerMake an instance after successful configuration.Note: your class should return the exact type, only this very broad interface should use
Objectas return type.- Specified by:
makein interfaceParameterizer- Returns:
- a new instance
-
-