Package elki.algorithm.statistics
Class HopkinsStatisticClusteringTendency.Par
- java.lang.Object
-
- elki.algorithm.statistics.HopkinsStatisticClusteringTendency.Par
-
- All Implemented Interfaces:
Parameterizer
- Enclosing class:
- HopkinsStatisticClusteringTendency
public static class HopkinsStatisticClusteringTendency.Par extends java.lang.Object implements Parameterizer
Parameterization class.- Author:
- Lisa Reichert
-
-
Field Summary
Fields Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>distanceThe distance function to use.protected intkNearest neighbor number.static OptionIDK_IDParameter for k.protected double[]maximaStores the maximum in each dimension.static OptionIDMAXIMA_IDParameter for maximum.protected double[]minimaStores the minimum in each dimension.static OptionIDMINIMA_IDParameter for minimum.protected RandomFactoryrandomRandom source.protected intrepNumber of repetitions.static OptionIDREP_IDParameter to specify the number of repetitions of computing the hopkins value.protected intsampleSizeSample size.static OptionIDSAMPLESIZE_IDSample size.static OptionIDSEED_IDParameter to specify the random generator seed.
-
Constructor Summary
Constructors Constructor Description Par()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidconfigure(Parameterization config)Configure the class.HopkinsStatisticClusteringTendencymake()Make an instance after successful configuration.
-
-
-
Field Detail
-
SAMPLESIZE_ID
public static final OptionID SAMPLESIZE_ID
Sample size.
-
REP_ID
public static final OptionID REP_ID
Parameter to specify the number of repetitions of computing the hopkins value.
-
SEED_ID
public static final OptionID SEED_ID
Parameter to specify the random generator seed.
-
MINIMA_ID
public static final OptionID MINIMA_ID
Parameter for minimum.
-
MAXIMA_ID
public static final OptionID MAXIMA_ID
Parameter for maximum.
-
K_ID
public static final OptionID K_ID
Parameter for k.
-
distance
protected NumberVectorDistance<? super NumberVector> distance
The distance function to use.
-
sampleSize
protected int sampleSize
Sample size.
-
rep
protected int rep
Number of repetitions.
-
k
protected int k
Nearest neighbor number.
-
random
protected RandomFactory random
Random source.
-
maxima
protected double[] maxima
Stores the maximum in each dimension.
-
minima
protected double[] minima
Stores the minimum in each dimension.
-
-
Method Detail
-
configure
public void configure(Parameterization config)
Description copied from interface:ParameterizerConfigure the class.Note: the status is collected by the parameterization object, so that multiple errors may arise and be reported in one run.
- Specified by:
configurein interfaceParameterizer- Parameters:
config- Parameterization
-
make
public HopkinsStatisticClusteringTendency make()
Description copied from interface:ParameterizerMake an instance after successful configuration.Note: your class should return the exact type, only this very broad interface should use
Objectas return type.- Specified by:
makein interfaceParameterizer- Returns:
- a new instance
-
-