Package elki.algorithm.statistics
Class HopkinsStatisticClusteringTendency.Par
- java.lang.Object
-
- elki.algorithm.statistics.HopkinsStatisticClusteringTendency.Par
-
- All Implemented Interfaces:
Parameterizer
- Enclosing class:
- HopkinsStatisticClusteringTendency
public static class HopkinsStatisticClusteringTendency.Par extends java.lang.Object implements Parameterizer
Parameterization class.- Author:
- Lisa Reichert
-
-
Field Summary
Fields Modifier and Type Field Description protected NumberVectorDistance<? super NumberVector>
distance
The distance function to use.protected int
k
Nearest neighbor number.static OptionID
K_ID
Parameter for k.protected double[]
maxima
Stores the maximum in each dimension.static OptionID
MAXIMA_ID
Parameter for maximum.protected double[]
minima
Stores the minimum in each dimension.static OptionID
MINIMA_ID
Parameter for minimum.protected RandomFactory
random
Random source.protected int
rep
Number of repetitions.static OptionID
REP_ID
Parameter to specify the number of repetitions of computing the hopkins value.protected int
sampleSize
Sample size.static OptionID
SAMPLESIZE_ID
Sample size.static OptionID
SEED_ID
Parameter to specify the random generator seed.
-
Constructor Summary
Constructors Constructor Description Par()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
configure(Parameterization config)
Configure the class.HopkinsStatisticClusteringTendency
make()
Make an instance after successful configuration.
-
-
-
Field Detail
-
SAMPLESIZE_ID
public static final OptionID SAMPLESIZE_ID
Sample size.
-
REP_ID
public static final OptionID REP_ID
Parameter to specify the number of repetitions of computing the hopkins value.
-
SEED_ID
public static final OptionID SEED_ID
Parameter to specify the random generator seed.
-
MINIMA_ID
public static final OptionID MINIMA_ID
Parameter for minimum.
-
MAXIMA_ID
public static final OptionID MAXIMA_ID
Parameter for maximum.
-
K_ID
public static final OptionID K_ID
Parameter for k.
-
distance
protected NumberVectorDistance<? super NumberVector> distance
The distance function to use.
-
sampleSize
protected int sampleSize
Sample size.
-
rep
protected int rep
Number of repetitions.
-
k
protected int k
Nearest neighbor number.
-
random
protected RandomFactory random
Random source.
-
maxima
protected double[] maxima
Stores the maximum in each dimension.
-
minima
protected double[] minima
Stores the minimum in each dimension.
-
-
Method Detail
-
configure
public void configure(Parameterization config)
Description copied from interface:Parameterizer
Configure the class.Note: the status is collected by the parameterization object, so that multiple errors may arise and be reported in one run.
- Specified by:
configure
in interfaceParameterizer
- Parameters:
config
- Parameterization
-
make
public HopkinsStatisticClusteringTendency make()
Description copied from interface:Parameterizer
Make an instance after successful configuration.Note: your class should return the exact type, only this very broad interface should use
Object
as return type.- Specified by:
make
in interfaceParameterizer
- Returns:
- a new instance
-
-