Package elki.algorithm.statistics
Statistical analysis algorithms.
The algorithms in this package perform statistical analysis of the data (e.g., compute distributions, distance distributions etc.)
-
Class Summary Class Description AddSingleScale Pseudo "algorithm" that computes the global min/max for a relation across all attributes.AddSingleScale.Par Parameterization class.AddUniformScale Pseudo "algorithm" that computes the global min/max for a relation across all attributes.AveragePrecisionAtK<O> Evaluate a distance functions performance by computing the average precision at k, when ranking the objects by distance.DistanceQuantileSampler<O> Compute a quantile of a distance sample, useful for choosing parameters for algorithms.DistanceQuantileSampler.Par<O> Parameterization classDistanceStatisticsWithClasses<O> Algorithm to gather statistics over the distance distribution in the data set.EvaluateRankingQuality<V extends NumberVector> Evaluate a distance function with respect to kNN queries.EvaluateRetrievalPerformance<O> Evaluate a distance functions performance by computing the mean average precision, ROC, and NN classification performance when ranking the objects by distance.EvaluateRetrievalPerformance.KNNEvaluator Evaluate kNN retrieval performance.EvaluateRetrievalPerformance.RetrievalPerformanceResult Result object for MAP scores.HopkinsStatisticClusteringTendency The Hopkins Statistic of Clustering Tendency measures the probability that a data set is generated by a uniform data distribution.HopkinsStatisticClusteringTendency.Par Parameterization class.RankingQualityHistogram<O> Evaluate a distance function with respect to kNN queries.